NATIONAL CENTER FOR HEALTH STATISTICS

Public Use

 Data Tape DocumentationBiochemistry, Serology, Hematology,
Blood Slides, Urine Didst.
Tape Number 4800 Verein 2 (Reprint)
National Health and Nutrition Examination Survey, 1971-75

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

CENTERS FOR DISEASE CONTROL

Public Use Data Tape Documentation

Biochemistry, Serology, Hematology, Blood Slides, Urine Dipst. Tape Number 4800
National Health and Nutrition Examination Survey, 1971-75

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Public Health Service
Centers for Disease Control
National Center for Health Statistics

The data compilation and documentation necessary for the Biochemistry, Serology, Hematology, and Peripheral Blood Slides Data Tape were done by Clifford Johnson, Robinson Fulwood, Dale Hitchcock, Matthew Najjar, Everette Collins, Sidney Abraham, Arnold Engel and Evelyn Stanton of the Division of Health Examination Statistics, National Center for Health Statistics. A special note of gratitude is due Eugene Sides and Carol Flaherty who patiently typed and retyped this material.
Page
HANES 1971-1975
Description of Survey 1
Target Population 1
Data Collection 3
Use of HANES Data 4
Errors in the Data Sets and Survey Differences 5
Missing Data 6
Variance Estimation 7
Tape Characteristics 8
General Notes
Asterisks on Tape Description 9
Demographic Information 9
Laboratory Examination 10
Laboratory Data Editing 10
Tape Description Sumary
Demographic Data 11
Biochemistry, Serology, Hematology \& Peripheral B1ood Slides Data 14
Tape Description
Demographic Data 17
Biochemistry, Serology, Hematology \& Peripheral Blood Slides 34
Detailed Notes 54

BIOCHEMISTRY, SEROLOGY, HEMATOLOGY, AND PERIPHERAL BLOOD SLIDES

Health and Nutrition Examination Survey, HANES I, 1971-1975

Description of Suryey: A detailed description of the design, content and operation of HANES I is provided in the following reports: Plan and Operation of the Health and Nutrition Examination Survey, DHEW Pub. No. (HSM) 73-1310, Series 1, Nos. 10a and 10b, Public Health Service, Washington, D. C., U. S. Government Printing Office, February 1973. Also provided is a draft report on the augmentation survey of adults describing the relevant field work conducted between July 1974 and October 1975.

Target Population: HANES I was conducted on a nationwide probability sample of approximately 32,000 persons, ages $1-74$ years, from the civilian, noninstitutionalized population of the coterminous United States, excepting those persons residing on Indian reservations. The survey started in April 1971 and for many survey components was completed in June 1974. The HANES I sample was selected so that certain population groups thought to be at high risk of malnutrition (persons with low incomes, preschool children, women of childbearing age and the elderly) were oversampled at known rates. Adjusted sampling weights were then computed within 60 age, sex and race categories in order to inflate the sample in such a manner as to closely reflect the noninstitutionalized population, ages 1-74 years, of the United States at the midpoint of the survey.

Although the main emphasis of HANES I was on nutrition, a subset of those sample persons aged 25-74 received a more detailed health examination which was continued through October 1975. No particular oversampling of subgroups of the population was done in this subsample (e.g., women of childbearing age were not oversampled as they were for the major nutrition component of HANES I). This subsample is also representative of the United States population aged 25-74 during the time of HANES I.

After the nutrition survey was completed, the detailed examination given to the 25-74 age group was continued until the total number of examined persons was approximately double the number of examinees who received the detailed examination during the nutrition survey.

In order to produce national estimates of the nutritional status of the U. S. population at an earlier date, a probability subsample of 35 stands of the 65 Primary Sampling Units (PSU's) was selected. This subsample also made it possible to produce national estimates of certain other aspects of health status in the population that were critically needed at an earlier date and examination components that for logistic reasons could not be continued for the remainder of the 65 PSU's. Included among the 35 PSU's were 10 of the 15 large certainty metropolitan areas and 1 PSU from each of the 25 noncertainty superstrata. The reduction from 15 to 10 large metropolitan areas was accomplished by randomly selecting one PSU from multiple-PSU standard metropolitan statistical areas; e.g., selecting the southern half of the Chicago

SMSA to represent the entire SMSA. (This selection procedure was based on operational considerations, and although unbiased, is recognized as not being statistically optimal.)

Data Collection: Information for all examined sample persons in HANES I was obtained by means of a household interview, a general medical history, a 24-hour dietary intake recall interview, a food frequency interview, a food program questionnaire, a general medical examination, dental, dermatological and ophthalmological examinations, anthropometric measurement, hand-wrist x-rays (of those ages 1-17 only) and 24 hematological, blood chemistry, and urological laboratory determinations.

In addition to the information received on all examined persons by means of the above questionnaires, procedures and measurements, the following data were gathered on the subsample of adults aged 25-74: a medical history supplement; supplementary questionnaires concerning arthritis, respiratory and cardiovascular conditions (when applicable); a health care needs questionnaire; a general well-being questionnaire; an extended medical examination; x-rays of the chest and hip and knee joints, audiometry; electrocardiography; goniometry; spirometry; pulmonary diffusion and tuberculin tests, along with additional laboratory determinations.

With the goal of mutual benefit, NCHS requests the cooperation of recipients of data tapes in certain actions related to their use:
A. Any published material derived from the data should acknowledge the National Center for Health Statistics as the original source. It should also include a disclaimer which credits any analyses, interpretations, or conclusions reached to the author (recipient of the tape) and not to NCHS, which is responsible only for the initial data.
B. Consumers who wish to publish a technical description of the data will make a reasonable effort to insure that the description is not inconsistent with that published by NCHS. This does not mean, however, that NCHS will review such descriptions.

Errors in the Data Sets and Survey Differences

The data users' tapes have been subjected to a great deal of careful editing. However, due to the large volume of data in the series, it is likely that a small number of errors or discrepancies remain undetected. We would appreciate if any such errors are detected that they be brought to our attention so that new corrected copies of the tape can be created and errata sheets issued to previous purchasers.

Some of the continuous data items have extremely high or low values and we have verified that they do in fact appear that way on the hard documents; that is, we have verified that the values have not been incorrectly keyed.

In general, we have not attempted to resolve any differences that may exist between estimates derived from the various subsamples of HANES I. Nor have we made any comparisons between estimates from HANES I and previous surveys conducted by the Division of Health Examination Statistics.

Missing Data

Examination surveys are subject to the loss of information not only through the failure to examine all sample persons but also from the failure to obtain and record all items of information for examined persons. Other information obtained from the examined persons may subsequent1y be determined to be of unacceptable quality and excluded from the final data.

In order to provide national probability estimates for selected biochemical determinations from the first 65 locations of HANES, a procedure was developed to estimate the missing determinations for a sample person. Estimates were made for missing data on the basis of selecting another examined sample person of a similar age, sex, race, and location, and substituting that person's values for the missing items of data. All values imputed using this procedure have been indicated so by a special imputation code on the data tape. This method of imputing missing data has not been used at this time for locations 66-100 of HANES.

For children less than four years of age, the number of missing values was too great to use the previously defined imputation procedure. Therefore, all missing data for these children were not imputed but left as missing but applicable.

Variance Estimation

Because the Health and Nutrition Examination Survey is based upon a complex sample design, the assumptions of many statistical tests and routinely available statistical programs are not met. For this reason, when estimates of the variances of statistics from HANES are computed, the technique of estimation must be based upon complex sampling theory. In order to provide the user with the capability of estimating the complex sample variances, we have provided Strata and Primary Sampling Unit (PSU) codes on the HANES user tapes in tape positions 194-198. However, these codes are suitable for making variance estimates only for examination locations 1-65 and 1-100. To compute variance estimates for examination locations 1-35 or $66-100$, it is necessary to recode the current Strata-PSU codes according to the specifications that follow. The resultant recoded Strata-PSU codes should be used only for locations 1-35 and 66-100.

One computer program that should be widely available sometime around the summer of 1978 as part of the Statistical Analysis System (available from the SAS Institute, Inc., Post Office Box 10066, Raleigh, North Carolina . 27605) is capable of using the Strata-PSU codes provided for HANES to compute complex sample variances. Other prograns may also be available.

In those Strata, referred to as certainty or self-representing Strata, the PSU codes are actually the segment numbers. Neither the Strata codes nor the PSU codes are the original codes used in the formation of the HANES sample design, but are none-the-less a unique recoding of the original codes. For further discussion of the sample design of HANES, the user should consult the publications of the National Center for Health Statistics-Series l-Nos. 10a and 14 and the detailed note for tape positions 158-193.

Recode Specifications for Strata-PSU Codes

First.--Create a file with only those records in the file for examination locations 1-35.*

Second.--Retain the original Strata-PSU codes in Strata 7-10 and 13 in the original form as the recoded Strata-PSU codes.

Third.--Recode the remaining strata according to the chart below.
Fourth.--Repeat the process for examination locations 66-100.*

01d Strata \#
(tape positions 194-195) New Strata * New PSU \#
01 • 01 001

0201
002
03 - 03
03 001
$06 \quad \therefore \quad 03$
002
04 . 04
04001
05 04 002
11 11
12 1 14 14 21 14 15 15 16 15 17 17 20 17 18 18 19 18
22 22

22001
25 . 22 002
23 23
24 23
26 26
27 26
26 002
28
28
001
29 28
002
30 30
001
35 30
002
31 3
32 31
001
33 - 33
002
3433002
001
*See detailed note for tape positions 158-193.

$$
-7 a-
$$

TAPE CHARACTERISTICS

Title: Biochemistry, Serology, Hematology, Peripheral Blood Slides and Urinary Data
Catalog Number: 4800
Data Set Name: HEHANESI.DU480011
Record Length: 600
Blocksize: 4200
Number of Records: 23808
Number of Reels: Varying
Recording Mode: Fixed Block, EBCDIC
Channel: 9 Track
Created by: Division of Health Examination StatisticsNational Center for Health StatisticsHyattsville, Maryland

General Notes

Asterisks on the Tape Description: Some of the data items were obtained only for a particular subsample of HANES. Consequently some of these items appear to have a great deal of missing data (coded as BLANK) due to nonresponse, but in fact the data are missing because the design of HANES dictated that the item was to be obtained only for a particular subsample. (For further discussion of the various subsamples in HANES the user should see the detailed note for tape positions 158-193.)

To alert the user to this fact asterisks were put on the tape description. One asterisk denotes that the data item was obtained only on examinees at locations $1 \mathbf{- 6 5}$, two asterisks denote that it was obtained only at locations 66-100 and three asterisks denote that it was obtained only on examinees receiving the detailed examination.

Demographic Information: An advance letter, announcing the forthcoming arrival of an interviewer from the U. S. Bureau of the Census, was mailed to each household that fell into the sample area. The interviewer subsequently visited the household to ascertain its composition and to administer a questionnaire, the primary purpose of which was to obtain demographic information. The questionnaire was administered to each potential sample person that was available and competent enough to respond to questions. In the event that a potential sample person was not at home at the time of interview, any responsible adult in the household was asked to respond to the questions for the absent person.

Demographic information for each of the examinees appears in tape positions l-200.

Laboratory Examination: For all sample persons an attempt was made to obtain blood and urine samples. In the mobile examination center the laboratory technician was responsible for screening the urine specimen for sugar, albumin, and blood; for performing the basic hematology tests; and for preparing and packaging the urine and blood samples to be sent to the Center for Disease Control (CDC) in At1anta, Georgia.

With the exception of the T-3 and T-4 determinations, which were performed by a private contractor, the remaining laboratory determinations described in this document were performed by CDC.

Some determinations were done on all sample persons, while others were performed only on detailed examinees or groups of examinees determined to be of special interest. Laboratory methodologies for all blood and urine determinations are available upon request from the Division of Health Examination Statistics.

Laboratory Data Editing: All laboratory results performed in the mobile examination center and at CDC were compiled and keypunched onto cards at CDC and sent to the Division of Health Examination Statistics. The data was checked for completeness of recording and certain range edits were run to check for unusually high or low values. Other edits were done to check for consistency and accuracy of the data. All unusual results were verified for correctness against original laboratory records on file in the Division of Health Examination Statistics or at CDC.

DEMOGRAPHIC DATA SUMMARY - HANES I

Tape
Positions
Sample sequence number 1
Size of place 10
SNSA-not SMSA 11
Type of living quarters 12
Land usage 13
If rural, asked - How many acres of land are included 14
If 10 acres or more asked - Sale of crops, etc. amount to $\$ 50$ or more 15
If 10 acres or less asked - Sale of crops, etc. amount to $\$ 250$ or more. 16
Age - head of houschold 17
Sex - head of household 19
Highest grade attended - head of household 20
Race - head of household 22
Total number of persons in household 23
Total sample persons in household 25
Number of rooms in house 27
Is there piped water 28
If yes, is there hot and cold piped water 29
If yes to piped water - Does house have a sink with piped water 30
Does house have a range or cook stove 31
Does house have a refrigerator. 32
Are kitchen facilities used by anyone not living in household 33
Total family income group 34
NOTE: The following income questions were asked only if 'Total Family Income" was less than \$7,000
During Past Year Did you or Any Members of Your Family Receive Money From:
Wages or salaries 36
If yes - How much altogether before deductions 37
Social Security or Railroad Retirement 41
If yes - How much altogether 42
Welfare payments or other public assistance 46
If yes - How much altogether 47
Unemployment or Workman's Compensation 51
If yes - How much altogether 52
Government employee pensions or private pensions 56
If yes - How much altogether 57
Dividends, interest or rent 61
If yes - How much altogether 62
Net income from own non-farm business, professional practice or partnership 66
If yes - How much altogether 67
Net income from a farm 71
If yes - How much altogether 72
Veteran's payments -6
If yes - How much altoge ther 77
Alimony, child support or contributions from persons not living in household 81
If yes - How much altogether 82
Any other income 86
If yes - How much altogether 87
Total amount 91
Family unit code 95
Relationship to head of household 100
Age at interview 101
Race of examined person 103
Sex of examined person 104
Marital statts 105
Date of birth (month and year) 106
Place of birth 110
Highest grade of regular school ever attended 112
Did he finish the grade 114
Is he attending school now 115
Has he ever attended a school of any kind 116
If yes - What kind of school 117
Is any language other than English frequently spoken in the household 118
If yes - What language 119
What is your main ancestry or national origin 120
What was he doing most of past three months 122
If "something else" - What was he doing 123
If "keeping house' or "something else" - Did he work at a job or business at any time during the past three months 124
If "working" - Did he work full-time or part-time 125
Did he work at any time last week or the week before (not around house) 126
If no - Even though he did not work during that time, does he have a job or business 127
Was he looking for work or on lay-off from a job 128
If yes - Which 129
Class of worker 130
If self-employed in "own" business and not a farm, is the business incorporated 131
Business or industry code 132
Occupation code 135
Date of examination 138
Age at examination 144
Farm/non-farm 146
Poverty index 147
Region 150
FOOD PROGRAMS APPLICABILITY 151
Are you certified to participate in the food stamp program? 152
Are you buying food stamps now? 153
What is the main reason you aren't participating in the program? 154
Are you certified to participate in the commodity distribution program? 155
Are you receiving commodity foods now for your family? 156
Why aren't you participating in the program? 157
SAMPLE WEIGHTS 158
STRATA - Primary Sampling Unit (PSU) 194

Biochemistry, Serology, Hematology and Peripheral Blood Slides and Urinary Data
SUMMARY
Tape Positions

Catalog Number - 4800 201
Hour of collection 205
AM or PM (hour of collection) 207
Hours since last meal 208
Type of last meal 210
Have you taken vitamins within last 30 days 211
How many days since vitamins taken 212
Have you taken minerals within last 30 days 214
How many days since minerals taken 215
Have you taken aspirin within last 30 days 217
How many days since aspirin taken 218
Have you taken diuretics within last 30 days 220
How many days since diuretics taken 221
Have you taken other medication within last 30 days 223
How many days since other medication taken 224
Physical activity in past 24 hours 226
Serum Protein 227
Serum Protein imputation 231
Serum Albumin 232
Serum Albumin imputation 236
Serum Cholesterol 237
Serum Cholesterol imputation 241
Serum Magnesium 242
Serum Magnesium imputation 246
Hemoglobin 247
Hemoglobin imputation 251
Hematocrit 252
Hematocrit imputation 255
Serum Iron 256
Serum Iron imputation 260
Total Iron Binding Capacity 261
Total Iron Binding Capacity imputation 265
Percent Transferrin Saturation 266
Percent Transferrin Saturation imputation 270
Serum Sodium 271
Serum Potassium 274
Serum Folate 277
Sedimentation Rate 280
Weights for Hemoglobin and Hematocrit only 283
Weights for Iron, TIBC and \% Transferrin Saturation Only 289

- Leukoblasts 311
Promyelocytes 313
Myelocytes 315
Metamyelocytes 317
Band Neutrophils 319
Segmented Neutrophils 321
Eosinophils 323
Basophils 325
Lymphocytes 327
Monocytes 329
Anisocytosis 331
Poikilocytosis 332
Macrocytosis 333
Microcytosis 334
Hypochromia 335
Number of Nucleated Red Cells Per 100 White Cells 336
Platelet Estimate 338
Miscellaneous Findings
First Glossary Code 339
Second Glossary Code 341
Third Glossary Code 343
Fourth Glossary Code 345
Fifth Glossary Code 347
Sixth Glossary Code 349
Morphological Interpretations
First Glossary Code 351
Second Glossary Code 353
Third Glossary Code 355
Fourth Glossary Code 357
Fifth Glossary Code 359
Sixth Glossary Code 361
Quality of Slide 363
Technician Number 364
Slide Reading Results 365
Polio I 401
Polio II 404
Polio III 407
Measles 410
Rubella 413
Diphtheria 416
Tetanus 421
Amebiasis 426
Syphilis Screen - ART 431
Syphilis Verified - FTA 432
Syphilis - Quantitative - ART 433
Syphilis - Quantitative - VDRL 436
Hemoglobin Phenotype 441
Percent A2 Hemoglobin 443
Percent F Hemoglobin 446
Total bilirubin 451
SGOT 455
Alkaline Phosphatase 459
Uric Acid 463
Calcium 466
Phosphate 469
BUN 472
Creatinine 475
T4 Test 478
T3 Test 481
T4 Murphy-Pattee 48.4
Albumin (Protein) 501
Glucose 502
pH 503
Hematest (Blood) 504
Urobilinogen 505
Bilirubin 506
Ketones. 507
Technician Number 508
Red Blood Cells. 526
White Blood Cells 529
Trinary Iodine. 532
Urinary Riboflavin. 536
Urinary Thiamine 540
Urinary Creatinine 544
Urinary Iodine/Creatinine 548
Urinary Riboflavin/Creatinine 554
Urinary Thiamine/Creatinine 560
Serum Vitamin A. 566
Serum Vitamin A Adjustment Code 569
henletil and nutrition examination surpey (innes i)
DEMOGRAPIIIC DÁTA TAPE

héaltil and nutrition rxaminatión survey (hanes i)!

HEALTH AND NUTRITION EXAMINATION SURVEY (IIANES I)

HEALTH AND NUTRITION EXAMINATION SURVEY (ILANES I)

hEALTH AND NUTRITION EXAMINATION SURVEY (IIANES I)

héalth and nutrition examination survey (hanes i)

health and nutrition examination survey (hanes i)

HEALTH AND NUTRITION EXAMINATION SURVEY (IIANES I)

heilth and nutrition examinatton survey (lianes i)

héalth and nutrition bxamination supvey (lanes i)

héalth and nutrition examination survey (hanes i)

health and nutrition examination survey (hanes i);

hëalth and nutrition examination survey (hanes i)

healtil and nu'rition exdmination survey (hanes i)

\begin{tabular}{|c|c|c|c|c|c|}
\hline cm \& Tape Loc. \& \[
\begin{aligned}
\& \text { No. of } \\
\& \text { Positions }
\end{aligned}
\] \& ITEM DESCRIPTION \& CODES \& Control Counts \& \begin{tabular}{l}
HANES I \\
Data Source
\end{tabular} \\
\hline \& 153 \& 1

. \& | Are you buying stamps now? |
| :--- |
| 1-Yes, regularly |
| 2 - Yes, occasionally |
| 3 - No |
| 8 - Blank, but applicable ■lank | \& \[

$$
\begin{array}{r}
1965 \\
89 \\
307 \\
13 \\
21434
\end{array}
$$
\] \& Food Programs Quest.米

\hline \& 154 \& 1 \& | What is the main reason you aren't participating in the program? |
| :--- |
| 1 - No need |
| 2 - Not enough money at the time |
| 3 - No transportation |
| 4-Pride |
| 5 - Other |
| 8-Blank, but applicable |
| Blank | \& \& Food Programs Quest. *

\hline \[
$$
\begin{aligned}
& 1 \\
& y_{1} \\
& \text { H1 }
\end{aligned}
$$

\] \& 155 \& 1 \& | Are you certified to participate in the commodity distribution program? |
| :--- |
| 1-Yes |
| 2 - No |
| 9 - Don't know |
| Blank | \& \[

$$
\begin{array}{r}
215 \\
423 \\
25 \\
23145
\end{array}
$$
\] \& Food Programs Quest. -

\hline \& 156. \& 1 \& ```
Are you receiving commodity foods now for your family?
1-Yes, regularly
2 - Yes, occasiona1ly
3-No
8 - Blank, but applicable
B1ank

``` & 159
14
39
3
23593 & Food Programs Quest.
\[
1 k
\] \\
\hline & 157 & 1 & \begin{tabular}{l}
Why aren't you participating in the program? \\
1 - No need \\
2 - No transportation \\
3 - Pride \\
4 - Other \\
8 - Blank, but applicab1e \\
Biank
\end{tabular} & 16
5
2
15
1
23769 & Food Programs Quest. 1
7 \\
\hline
\end{tabular}


Biochemistry, Serology, Hematology, and Peripheral Blood Slides and Urinary Data ( \(n=23808\) )

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Item } \\
&
\end{aligned}
\] & Tape Loc. & \[
\begin{gathered}
\text { No. of } \\
\text { Positions }
\end{gathered}
\] & ITEM DESCRIPTION \& CODES & Control Counts & HANES I Data Source \\
\hline \multirow{7}{*}{1} & 214 & 1 & \begin{tabular}{l}
Have you taken minerals within last 30 days? \\
1 - Yes \\
2 - No \\
8 - Blank, but applicab1e
\end{tabular} & \[
\begin{array}{r}
4317 \\
19130 \\
361
\end{array}
\] & \\
\hline & \[
\begin{aligned}
& 215- \\
& 216
\end{aligned}
\] & 2 & \begin{tabular}{l}
How many days since minerals taken? 00-30 - As given \\
88 - Blank, but applicable \\
99 - Not applicable
\end{tabular} & \[
\begin{array}{r}
4317 \\
361 \\
19130
\end{array}
\] & \\
\hline & 217 & 1 & ```
Have you taken aspirin within last 30 days?
1-Yes
2-No
8 - Blank, but applicable
``` & \[
\begin{array}{r}
12504 \\
10939 \\
365
\end{array}
\] & \\
\hline & \[
\begin{aligned}
& 218- \\
& 219
\end{aligned}
\] & 2 & \begin{tabular}{l}
How many days aince aspirin taken? 00-30 - As given \\
88 - Blank, but applicable \\
99 - 'Not applicable
\end{tabular} & \[
\begin{array}{r}
12504 \\
365 \\
10939
\end{array}
\] & \\
\hline & 220 & 1 & \begin{tabular}{l}
Have you taken diuretics within last 30 days? \\
1 - Yes \\
2 - No \\
8 - Blank, but app1icable
\end{tabular} & \[
\begin{array}{r}
1220 \\
21731 \\
857
\end{array}
\] & \\
\hline & \[
\begin{aligned}
& 221- \\
& 222
\end{aligned}
\] & 2 & \begin{tabular}{l}
How many days since diuretics taken? 00-30 - As given \\
8B - Blank, but applicable \\
99 - Not app1icable
\end{tabular} & \[
\begin{array}{r}
1220 \\
857 \\
21731
\end{array}
\] & - \\
\hline & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Item } \\
\|
\end{gathered}
\] & Tape Loc. & \[
\begin{aligned}
& \text { No. of } \\
& \text { Positions }
\end{aligned}
\] & ITEM DESCRIPTION \& CODES & Control Counts & \begin{tabular}{l}
LIANES I \\
Data Source
\end{tabular} \\
\hline \multirow{7}{*}{\[
\begin{gathered}
1 \\
\underset{\sim}{w} \\
1
\end{gathered}
\]} & \[
\begin{aligned}
& 232- \\
& 235
\end{aligned}
\] & 4 & ```
Serum Albumin (Gm/100ml) (XXX.X - decimal not shown on tape)
0027-0061 - As given
 9999 - Missing value (ages 1-3)
B1ank
``` & \[
\begin{array}{r}
20025 \\
724 \\
3059
\end{array}
\] & 米 \\
\hline & 236 & 1 & ```
Serum Albumin Imputation
0 - Not imputed
1-Missing value imputed
9 - Missing value not imputed (ages 1-3)
Blank
``` & \[
\begin{array}{r}
18770 \\
1255 \\
724 \\
3059
\end{array}
\] & 米 \\
\hline & \[
\begin{aligned}
& 237- \\
& 240
\end{aligned}
\] & 4 & \begin{tabular}{l}
Serum Cholesterol (\(\mathrm{Mg} / 100 \mathrm{ml}\)) (XXXX) \\
0049-0793 - As given \\
8888 - Missing value \\
9999 - Missing value (ages 1-3)
\end{tabular} & \[
\begin{array}{r}
23000 \\
81 \\
727
\end{array}
\] & \\
\hline & 241 & 1 & ```
Serum Cholesterol Imputation
0 - Not imputed
1-Missing and imputed
8 - Missing value not imputed
9 - Missing value not imputed (ages 1-3)
``` & \[
\begin{array}{r}
22074 \\
926 \\
81 \\
727
\end{array}
\] & \\
\hline & \[
\begin{aligned}
& 242- \\
& 245
\end{aligned}
\] & 4 & ```
Serum Magnesium (Meq/liter) (XX.XX - decimal not shown on tape)
0082-0289 - As given
    8888 - Missing value
    9999 - Missing value (ages 1-3)
``` & \[
\begin{array}{r}
23025 \\
54 \\
729
\end{array}
\] & \\
\hline & 246 & 1 & \begin{tabular}{l}
Serum Magnesium Imputation \\
0 - Not imputed \\
1 - Missing value imputed \\
8 - Missing value not imputed \\
9 - Missing value not imputed (ages 1-3)
\end{tabular} & \[
\begin{array}{r}
21905 \\
1120 \\
54 \\
729
\end{array}
\] & \\
\hline & \(\because\). & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Item } \\
\#
\end{gathered}
\] & Tape Loc. & No. of Positions & ITEM DESCRIPTION \& CODES & \begin{tabular}{l}
Control \\
Counts
\end{tabular} & IIANES I Data Source \\
\hline & \[
\begin{aligned}
& 247- \\
& 250
\end{aligned}
\] & 4 & ```
Hemoglobin (Gm/100ml)(XXX.X - decimal not shown on tape)
0050-0224 - As given
 7777 - Unacceptable data
 8888 - Missing value
``` & \[
\begin{array}{r}
22741 \\
1049 \\
18
\end{array}
\] & \begin{tabular}{l}
SPECIAL NOTE: \\
See Page 66
\end{tabular} \\
\hline & 251 & 1 & ```
Hemoglobin Imputation
0 - Not imputed
1 - Missing value imputed
7 - Unacceptable data not imputed
8 - Missing value not imputed
``` & \[
\begin{array}{r}
21699 \\
1042 \\
1049 \\
18
\end{array}
\] & SPECIAL NOTE: See Page 66 \\
\hline & \[
\begin{aligned}
& 252- \\
& 254
\end{aligned}
\] & 3 & \begin{tabular}{l}
Hematocrit (Percent) \\
019-068 - As given \\
777 - Unacceptable data \\
888 - Missing values
\end{tabular} & \[
\begin{array}{r}
22709 \\
1049 \\
50
\end{array}
\] & SPECIAL NOTE: See Page 66 \\
\hline & 255 & 1 & \begin{tabular}{l}
Hematocrit Imputation \\
0 - Not imputed \\
1 - Missing value imputed \\
7 - Unacceptable data not imputed \\
8 - Missing values not imputed
\end{tabular} & \[
\begin{array}{r}
22155 \\
554 \\
1049 \\
50
\end{array}
\] & \begin{tabular}{l}
SPECIAL NOTE: \\
See Page 66
\end{tabular} \\
\hline & \[
\begin{aligned}
& 256- \\
& 259
\end{aligned}
\] & 4 & ```
Serum Iron (\mug/100ml) (XXXX. - decimal not shown on tape)
0017-0396 - As given
 7777 - Unacceptable data
 9999 - Missing value (ages 1-3)
Blank
``` & \[
\begin{array}{r}
18882 \\
1088 \\
779 \\
3059
\end{array}
\] & SPECIAL NOTE: See Page 66 \\
\hline & 260 & 1 & \begin{tabular}{l}
Serum Iron Imputation \\
0 - Not imputed \\
1 - Missing value imputed \\
7 - Unacceptable data not imputed \\
9 - Missing value not imputed (ages 1-3) \\
Blank
\end{tabular} & \[
\begin{array}{r}
17265 \\
1617 \\
1088 \\
779 \\
3059
\end{array}
\] & SPECIAL NOTE: See Page 66 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline Item \｜ & Tape Loc． & No．of Positions & ITEM DESCRIPTTON A COLES & Control Counts & HANES I Data Source \\
\hline & & & PERIPHERAL BLOOD FILM & & PERIPHERAL BLOOD FILM \\
\hline & \[
\begin{aligned}
& 301- \\
& 310
\end{aligned}
\] & 10 & Blank－Data User Hork Area & & \\
\hline & \[
\begin{aligned}
& 311- \\
& 312
\end{aligned}
\] & 2 & ```
Leukoblasts (Percent of 100 Cells)
00 - As given
Blank
``` & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 来来 \\
\hline & \[
\begin{aligned}
& 313- \\
& 314
\end{aligned}
\] & 2 & \begin{tabular}{l}
Promyelocytes（Percent of 100 Cells） 00－116－As given \\
Blank
\end{tabular} & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 兴为为 \\
\hline \(1{ }^{\circ}\) & \[
\begin{aligned}
& 315- \\
& 316
\end{aligned}
\] & 2 & \begin{tabular}{l}
Myelocytes（Percent of 100 Cells） 00－19－As given \\
Blank
\end{tabular} & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & *kx \\
\hline \multirow[t]{5}{*}{\(\stackrel{\square}{ }\)} & \[
\begin{aligned}
& 317- \\
& 318
\end{aligned}
\] & 2 & ```
Metamyelocytes (Percent of LOO Cells)
00-0B - Aa given
Blank
``` & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] &  \\
\hline & \[
\begin{aligned}
& 319- \\
& 320
\end{aligned}
\] & 2 & \[
\begin{aligned}
& \frac{\text { Band Neutrophils }}{0(1-22-A s \text { given }} \\
& \text { Blank }
\end{aligned}
\] & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & \[
x+\frac{1}{4}
\] \\
\hline & \[
\begin{aligned}
& 321- \\
& 322
\end{aligned}
\] & 2 & \[
\begin{aligned}
& \text { Segmented Neutrophila (Percent of } 100 \text { Cells) } \\
& \text { 02-94-As given } \\
& \text { Blank }
\end{aligned}
\] & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 益本农 \\
\hline & \[
323-
\] & 2 & \begin{tabular}{l}
Eosinophils（Percent of 100 Celle） 00－17－As given \\
Blank
\end{tabular} & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 必氷来 \\
\hline & & &  & & － \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|}
\hline Item
\[
\#
\] & Tape Loc． & \[
\begin{aligned}
& \text { No. of } \\
& \text { Positions }
\end{aligned}
\] & ITEM DESCRIPTION \＆CODES & Control Counts & \begin{tabular}{l}
HANES I \\
Data Source
\end{tabular} \\
\hline & \[
\begin{aligned}
& 355- \\
& 356
\end{aligned}
\] & 2 & Third Glossary Code B8－Blank，slide read Blank & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & PERIPHERAL BLOOD FILM类米米 \\
\hline & \[
\begin{aligned}
& 357- \\
& 358
\end{aligned}
\] & 2 & Fourth Glossary Code B8－Blank，alide read Blank & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 本 \\
\hline & \[
\begin{aligned}
& 359- \\
& 360
\end{aligned}
\] & 2 & \[
\begin{aligned}
& \frac{\text { Flfth Glossary Code }}{\text { 日B - Blank, olide read }} \\
& \text { Blank }
\end{aligned}
\] & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & 東来米 \\
\hline & \[
\begin{aligned}
& 361- \\
& 362
\end{aligned}
\] & \(2 \cdots\) & \[
\begin{aligned}
& \text { Sixth Gloasary Code } \\
& \hline \text { B8-Blank, slide read } \\
& \text { Blank }
\end{aligned}
\] & \[
\begin{array}{r}
5854 \\
17954
\end{array}
\] & ＊＊坐 \\
\hline 1
f
1 & 363 & 1 & \begin{tabular}{l}
Quality of Slide \\
1 －Good－Satisfactory \\
2 －Fair \\
3 －Other \\
9 －Blank，but applicable Blank
\end{tabular} & \[
\begin{array}{r}
4471 \\
969 \\
805 \\
668 \\
16895
\end{array}
\] & 必本本 \\
\hline & 364 & I & ```
Technician (Reader) Number
1-5 - As given
9 - Blank, but applicable
Blank
``` & \[
\begin{array}{r}
5854 \\
1059 \\
16895
\end{array}
\] & 旲为必 \\
\hline & 365 & 1 & ```
Slide Reading Results
1 - Miaging or Uneatiafactory
2 - Avallable
Blank
``` & \[
\begin{array}{r}
11159 \\
5854 \\
16875
\end{array}
\] & － 4 米 \\
\hline & \[
\begin{aligned}
& 366- \\
& 400
\end{aligned}
\] & 35 & Blank－Data User Work Area & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Item } \\
\|
\end{gathered}
\] & Tape Loc． & No．of Positions & ITEM DESCRIPTION \＆CODES & \begin{tabular}{l}
Control \\
Counts
\end{tabular} & \begin{tabular}{l}
HANES I \\
Data Source
\end{tabular} \\
\hline \multirow{9}{*}{\[
\begin{gathered}
1 \\
\stackrel{\text { r }}{ } \\
\text { 1 }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 401- \\
& 403
\end{aligned}
\]} & \multirow[b]{2}{*}{3} & SEROLOGY & & \\
\hline & & & ```
Polio I
Titer Range:
    Less than 1:10 to greater than 1:80
    998 - Results unavailable
    999 - Test not done
    Blank
``` & \[
\begin{array}{r}
6323 \\
370 \\
220 \\
16895
\end{array}
\] & See Detalled Note米 来－4 \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& 404- \\
& 406
\end{aligned}
\]} & \multirow[t]{3}{*}{3} & \[
\frac{\text { Polio II }}{\text { Titer Range: }}
\] & & See Detailed Note \\
\hline & & & Less than 1：10 to greater than 1：\(\$ 0\) 998 －Results unavailable & \[
\begin{array}{r}
6323 \\
370
\end{array}
\] & \\
\hline & & & 999 －Test not done Blank & \[
\begin{array}{r}
220 \\
16895
\end{array}
\] & 来来 \\
\hline & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& 407- \\
& 409
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{3} & \[
\frac{\text { Polio III }}{\text { Titer Range: }}
\] & & See Detailed Note \\
\hline & & & \begin{tabular}{l}
Less than 1：10 to greater than 1：80 \\
998 －Results unavailable \\
999 －Test not done \\
Blank
\end{tabular} & \[
\begin{array}{r}
6323 \\
370 \\
220 \\
16895
\end{array}
\] & \\
\hline & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& 410- \\
& 412
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{3} & \[
\frac{\text { Measles }}{\text { Titer Range: }}
\] & & See Detailed Note \\
\hline & & & \begin{tabular}{l}
Less than 1：8 to greater than 1：40 \\
998 －Results unavailable \\
999 －Test not done \\
B1ank
\end{tabular} & \[
\begin{array}{r}
6502 \\
168 \\
243 \\
16895
\end{array}
\] & 米米 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Item \# & Tape Loc. & No. of Positions & ITEM DESCKIPTIJON \& CODES & Control Counts & HANES I Data Source \\
\hline & \[
\begin{aligned}
& 436- \\
& 438
\end{aligned}
\] & 3 & \begin{tabular}{l}
Quantitative Syphilis - VDRL (Venereal Disease Research Laboratory S1ide Test) \\
005 - Weakly Reactive \\
011 - Reactive 1:l Dilution \\
012 - Reactive 1:2 Dilution \\
014 - Reactive 1:4 Dilution \\
018 - Reactive 1:8 Dilution \\
318-Reactive at a dilution greater than 1:8 \\
888 - Unsuitable for testing \\
999 - Quantity insufficient \\
Blank - Nonreactive or nonapplicable
\end{tabular} & 10
12
9
1
1
2
259
65
23449 & 米来 \\
\hline \[
\begin{gathered}
1 \\
\stackrel{B}{0} \\
1
\end{gathered}
\] & \[
\begin{aligned}
& 439- \\
& 440
\end{aligned}
\] & 2 & BLANK, USER WORKSPACE & & \\
\hline & \[
\begin{aligned}
& 441- \\
& 442
\end{aligned}
\] & 2 & Hemoglobin Phenotype
```

01 - AA (normal)
02-AA
05 - AF (F>10%)
0B - AI
11 - AS
12 - SAF or SA (S-8 tha1)
17 - NC
18 - AD or AG (no further determination)
19 - AAF (\uparrowF but < 10%)
20 - A+ fast
28 - Other unidentified 46 present
88 - Blank, but applicable (Ilemog1obin phenotyping not done)
99 - Blank (not in phenotype study)

``` & \[
\begin{array}{r}
10770 \\
3 \\
6 \\
1 \\
89 \\
2 \\
18 \\
9 \\
17 \\
2 \\
1 \\
1364 \\
11526
\end{array}
\] & See Detailed Note \\
\hline
\end{tabular}

HEALTH AND NUTRITION EXAMINATION SURVEY (HANES I)

health and nutrition examination survey (llanes i)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Item } \\
\#
\end{gathered}
\] & Tape Loc. & \[
\begin{array}{|c|}
\text { No. of } \\
\text { Positions }
\end{array}
\] & ITEM DESCRIPTION AND CODES & \[
\begin{aligned}
& \text { Control } \\
& \text { Counts }
\end{aligned}
\] & HANES I Data Source \\
\hline \multirow{23}{*}{\[
\underset{\substack{\mathbf{U} \\ \mathbf{u} \\ \hline}}{ }
\]} & \multirow{10}{*}{501} & \multirow{10}{*}{1} & URINE DIPSTICK ANALYSIS & & \\
\hline & & & Albumin (Protein) (mg/ 100 ml) & & \\
\hline & & & 0-Negative & & \\
\hline & & & \[
1-30+
\] & 206 & \\
\hline & & & \(2-100++\) & 91 & \\
\hline & & & 3 - 300+++ & 31 & \\
\hline & & & 4 - Over 1000++++ & 15 & \\
\hline & & & 5 - Trace & 395 & \\
\hline & & & 8 - Blank, but applicable & 1829 & \\
\hline & & & Blank & 241 & \\
\hline & \multirow[t]{9}{*}{502} & \multirow[t]{9}{*}{1} & Glucose & & \\
\hline & & & 0-Negative & 21300 & \\
\hline & & & 1 - Light & 78 & \\
\hline & & & 2 - Med Ium & 77 & \\
\hline & & & 3 - Dark & 144 & \\
\hline & & & 4 - Very dark & 84 & \\
\hline & & & 5 - Trace & 52 & \\
\hline & & & B - Blank, but applicable & 1832 & \\
\hline & & & Blank & 241 & \\
\hline & \multirow[t]{4}{*}{503} & \multirow[t]{4}{*}{1} & pH & & \\
\hline & & & 4- Blank, but applicable & 1817 & \\
\hline & & & 5-9 - As given & 21750 & \\
\hline & & & Blank & 241 & \\
\hline & \multirow[t]{9}{*}{504} & \multirow[t]{9}{*}{1} & Hematest (Blood) & & \\
\hline & & & 0-Negative & 21005 & \\
\hline & & & 1 - Small & 331 & \\
\hline & & & 2 - Moderate & 202 & \\
\hline & & & 3 - Large & 89 & \\
\hline & & & 4 - Very large & 1 & \\
\hline & & & 5 - Trace & 1 & - \\
\hline & & & 8-Blank, but applicable & 1938 & \\
\hline & & & Blank & 241 & \\
\hline
\end{tabular}
hEALTH AND NUTRITION EXAMINATION SURVEY (HANES I)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item * & Tape Loc. & \[
\begin{array}{|c|}
\hline \text { No. of } \\
\text { Positions }
\end{array}
\] & ITEM DESCRIPTION AND CODES & Control Counts & HANES I Data Source \\
\hline \multirow{6}{*}{\[
\underset{\underset{\sim}{\mathbf{U}}}{\underset{\sim}{\mathbf{u}}}
\]} & 505 & 1 & \[
\begin{aligned}
& \frac{\text { Urobilinogen }}{1-\text { Negative, }} 0.1 \text { or } 1 \\
& 2-4 \\
& 3-8 \\
& 4-12 \\
& 8-\text { Blank, but applicable } \\
& \text { Blank }
\end{aligned}
\] & \[
\begin{array}{r}
2901 \\
3 \\
0 \\
18 \\
137 \\
20749
\end{array}
\] & 类 \\
\hline & 506 & 1 & ```
Bilirubin
0-Negative
1 - Small+
2 - Moderate++
3.- Large+++
4 - Very large+i++
5 - Trace
8-Blank, but applicable
Blenk
``` & 2886
32
2
1
0
1
137
20749 & HITK \\
\hline & 507 & 1 & \begin{tabular}{l}
Ketones \\
0-Negative \\
1 - Small \\
2 - Moderate \\
3 - Large \\
8 - Blank, but applicable Blank
\end{tabular} & \[
\begin{array}{r}
2864 \\
38 \\
17 \\
4 \\
136 \\
20749
\end{array}
\] & 專 \\
\hline & \[
\begin{aligned}
& 508- \\
& 509
\end{aligned}
\] & 2 & \begin{tabular}{l}
Technician Number \\
68-86, 89-90-As given 88 - Blank, but applicable Blank
\end{tabular} & \[
\begin{array}{r}
22642 \\
925 \\
241
\end{array}
\] & . \\
\hline & \[
\begin{aligned}
& 510- \\
& 525
\end{aligned}
\] & 16 & Blank - Data User Work Area & & \\
\hline & &  &  & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Item } \\
\#
\end{gathered}
\] & Tape Loc． & No．of Positions & ITEM DESCRIPTION AND CODES & \begin{tabular}{l}
Control \\
Counte
\end{tabular} & HANES I Data Source \\
\hline & \[
\begin{aligned}
& 548_{-} \\
& 553
\end{aligned}
\] & 6 & \begin{tabular}{l}
Urinary Iodine／Greatinine（ \(\mu \mathrm{B} / \mathrm{gm}\) ）（xкxкxx．－decimal not shown on tape） 0000n2－541962－As given \\
888888－Blank，but applicable \\
Blank
\end{tabular} & \[
\begin{array}{r}
18592 \\
2157 \\
3059
\end{array}
\] & 类 \\
\hline & \[
\begin{aligned}
& 554- \\
& 559
\end{aligned}
\] & 6 & \begin{tabular}{l}
Urinary Riboflavin／Greatinine（ \(\mu \mathrm{Mg} / \mathrm{gm}\) ）（кxxxxx，－decimal not shown on 000004－192500－As given \\
888R88－Blank，but applicable \\
Blank
\end{tabular} & \[
\left\{\begin{array}{r}
\text { ape) } \\
18167 \\
2582 \\
3 n 59
\end{array}\right.
\] & 少 \\
\hline N10 & \[
\begin{aligned}
& 560- \\
& 565
\end{aligned}
\] & 6 & \begin{tabular}{l}
Urinary Thiamine／Creatinine \(\operatorname{~} \mu \mathrm{g} / \mathrm{gm}\) ）（xккxxx．－decimal not shown on tar 000n12－056250－As given \\
888888 －Blank，but app1icable \\
Blank
\end{tabular} & \[
\begin{aligned}
& \text { e) } \\
& 18310 \\
& 2439 \\
& 3059
\end{aligned}
\] & 业 \\
\hline & \[
\begin{aligned}
& 566- \\
& 568
\end{aligned}
\] & 3 & \begin{tabular}{l}
Serum Vitamin \(A\left(\mu_{g} / d l\right)\)（xxx．－decimal not shown on tape） \\
009－279－As given \\
888－Blank，but applicable \\
Blank
\end{tabular} & \[
\begin{array}{r}
19088 \\
1661 \\
3059
\end{array}
\] & K＊See detailed notes \\
\hline & 569 & 1 & Serum Vitamin A Adjustment Code
```

1 = Adjusted
2 = Not adjusted
B = Blank, but applicable
Blank

``` & \[
\begin{array}{r}
3530 \\
15558 \\
1661 \\
3059
\end{array}
\] & ＊＊See detailed notes \\
\hline & \[
\begin{aligned}
& 570- \\
& 500
\end{aligned}
\] & 31 & BLANK－DATA USER WORK AREA & & \\
\hline
\end{tabular}

\section*{DETAILED NOTES}

TALE PDSITION 10

\section*{Size of Place}

Size of place classification was derived frow the 1960 census. According to the definition used in the 1960 census, the urban population was comprised of all persons living in (a) places of 2,500 inhabitants or more incorporated as cities, boroughs, villages and toms (except towns in New York, Nen England, and Wisconsin); (b) the densely settled urban fringe, whether incorporated or unincorporared, of urbanized areas; (c) towns in New England and townships in New Jersey and Pennsylvania which contained no incorporated municipalitics as subdivisions and had either 2,500 inhabitants or more, or a population of 2,500 to 25,000 and a density of 1,500 persons or more per square mile; (d) counties in states other than the New England states, New Jersey, and Pennsylvania, that had no incorporated municipalities within their boundaries and had a density of 1,500 persons per square mile; and (e) unincorporated places of 2,500 inhabitants or more not included in any urban fringe. The remaining population was classified as rural.

Orban areas are further classified by population size for places within urbanized areas and other places outside urbanized areas.

\section*{DETAILED NOTES}

\section*{TAPE POSITION 11}

SMSA

A standard metropolitan statistical area is basically a county or a group of contiguous counties which contains at least one city of 50,000 inhabitants or more, or "twin cities" with a combined population of at least 50,000. In addition to the county or counties containing such a city or cities, contiguous counties are included in an SMSA if, according to the 1960 Census, they are socially and economically integrated with the central city. Each SMSA must include at least one central city, and the complete title of an SMSA identifies the central city or cities.

\section*{Race}

The race of the respondent was marked by observation and it was assumed the race of all related persons was the same as the respondent unless otherwise learned. The race categories were "White", "Negro" or "other." If the appropriate category could not be marked by observation, then race was asked. Persons of races other than White or Negro, such as Japanese, Chinese, American Indian, Korean, Hindu, Eskimo, etc. were reported as "Other." Mexicans were included with "White" unless definitely known to be American Indian or of other nonwhite race.

DETAILED NOTES
TAPE POSITIONS 34-35

Total Family Income Group

The income group represents the total combined family income for the past twelve (12) months. It includes income from all sources such as wages, salaries, social security or retirement benefits, help from relatives, rent from property and so forth. The income groups were not reconciled to the component parts (tape positions 36-94). The income component parts were not asked when the gross income was greater than \(\$ 6,999\) per annum. However, amounts greater than \(\$ 6,999\) appear in tape positions 37-40, 67-70, and 72-75. Some respondents reported a loss of income.from their nonfarm business, professional practice, partnership or farm and this explains why some data fields are greater than \(\$ 6,999\), but the individual total in tape positions 91-94 does not exceed this figure.

\section*{TAPE POSITIONS 95-99}

Family Onit Code
-All related sample persons in the same family unit have the same computer generated family unit code. This will enable detailed analysis of the individual family unit.


TAPE POSITIONS 132-134 AND 135-137

Industry and Occupation Codes

A person's occupation may be defined as his principal job or business. For this survey purpose, the principal job or business of a respondent is defined in one of the following ways: If the person worked during the two week interview period or had a job or business, the question concerning his occupation (or work) applies to his job during that period. If the respondent held more than one job, the question is directed to the one at which he spent the most time. It refers to the one he considers most important when equal time is spent at each job. A person who has not begun work at a.new job, is looking for work, or is on layoff from work is questioned about his last full-time civilian job. A full-time job is defined as one at which the person spent 35 or more hours per week and which lasted two consecutive weeks or more. A person who has a job to which he has not yet reported and has never had a previous job or busiress is classified as a "new worker."

The 1970 census of population Alphabetical Index of Industries and Occupations was used in the coding of boch the industry and occupation.

Library of Congress Number 74-612012. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. \$3.00. Scock Number 0301-2283.

Land used for farming purposes (Code 1 in Tape Position 146) was identified as being rural land (Code 2 in Tape Position 13) consisting of 10 or more acres (Code 1 in Tape Position 14) with crop sales amounting to \(\$ 50\) or more (Code 2 in Tape Position 15), or rural land (Code 2 in Tape Position 13) consisting of less than 10 acres (Code 2 in Tape Position 14) with crop sales amounting to \(\$ 250\) or more (Code 3 in Tape Position 16). All Other land is classified as nonfarm (Code 2 In Tape Position 146).

Poverty Index-Income status was detemined by the Povercy Income Ratio (PIR). Poverty statistics published in the Census Bureau reports were based on the poverty index developed by the Social Security Administration in 1964. (For a detailed discussion of the SSA poverty standards, see reference 2.) Modifications in the definition of poverty were adopted in 1969.3/ The standard data series in poverty for statistical use by all executive departments and establishments has been established. 4/

The two components of the PIR are the total income of the household (numerator) and a multiple of the total income necessary to maintiain a family with given characteristics on a nutritionally adequate food plan 3 (denominator). The dollor value of the denominator of the PIR is constructed from a food plan (economy plan) necessary to maintain minimum recommended daily nutritional requirements. The economy plan is designated by the Department of Agriculture for "emergency or temporary use when funds are low."

For families of three or more persons, the poverty level was set at three times the cost of the economy food plan. For smaller families and persons living alone, the cost of the conomy food plan was adjusted by the relatively higher fixed expenses of these smaller households.

The denominator or poverty income cutoff adjusts the family poverty income maintenance requirements by. the family size, the sex of the family head, the age of the family head in families with one or two members, and the place of residence (farm, nonfarm). Annual revisions of the poverty income cutoffs are based on the changes in the average cost of living as reflected in the Consumer Price Index.

As shown in the table, the annual income considered to be the poverty level increases as the family size increases. A family with any combination of characteristics and with the same income as shown in the table has been designated as having a PIR or poverty level of 1.0 . The same family with tifice the income found in the table would have a PIR of 2.0 . Ratios of less than 1.0 can be described as "below poverty," ratios greater than or equal to 1.0 , as "at or above poverty?"

Poverty thresholds are computed on a national basis only. No attempt has been made to adjust these thresholds for regional, State, or orher local variation in the cost of living (except for the farm, nonfarm difference). None of the noncash public welfare benefits such as food stamp bonuses or free food coumodities are included in the income of the low income families receiving these benefits.

1/Current Population Reports, "Consumer Income," Series P-60, No. 77, May 7, 1971
2/Orshansky, M.: "Counting the Poor: Another Look at the Poverty Profile," Social Security Bulletin, January 1965; "Who's Who Among the Poor: A Demographic View of Poverty," Social Security Bulletin, July 1965.
3/Current Population Reports, "Special Studies," Series P-23, No. 28, August 12, 1969
4/Circular No. A-46, Iransmitted Memorandum No. 9, Executive Office of the Presideat, Bureau of the Budget, August 29, 1969, and Exhibit 1 (rev.).

\section*{DETAILED NOTES}

Weighted average thresholds at the lou income level in 2971 by sixe of family and sex of head, by farm-nonfarm residence
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size of family} & \multirow[b]{2}{*}{Tozal} & \multicolumn{3}{|c|}{Nonfarm} & \multicolumn{3}{|c|}{Farm} \\
\hline & & Tocal & \[
\text { Male }{ }^{1}
\]
head & \[
\begin{aligned}
& \text { Female } \\
& \text { head }
\end{aligned}
\] & Tocal & Hale \({ }^{1}\) head & \[
\begin{aligned}
& \text { Feallel } \\
& \text { head }
\end{aligned}
\] \\
\hline All unrelated individuals-------- & \$2,033 & \$2,040 & \$2,136 & \$1,978 & \$1,727 & \$1,783 & \$1,669 \\
\hline  & 2,093 & 2,098 & 2,181 & 2,017 & 1,805 & 1,853 & 1,715 \\
\hline  & 1,931 & 1,940 & 1,959 & 1,934 & 1,652 & 1,666 & 1,643 \\
\hline All families------------------------ & 3,700 & 3,724 & 3,764 & 3,428 & 3,235 & 3,242 & 3.079 \\
\hline 2 persons.- & 2,512 & 2,633 & 2,641 & 2,581 & 2,219 & 2,224 & 2,130 \\
\hline  & 2,699 & 2,716 & 2,731 & 2,635 & 2,317 & 2,322 & 2,195 \\
\hline Head 65 years and over------2-0 & 2,424 & 2,448 & 2,450 & 2,437 & 2,082 & 2,081 & 2,089 \\
\hline  & 3,207 & 3,229 & 3,246 & 3,127 & 2,745 & 2,749 & 2,627 \\
\hline 4 persons & 4,113 & 4,137 & 4,139 & 4,116 & 3,527 & 3,528 & 3,513 \\
\hline  & 4,845 & 4,880 & 4,884 & 4.837 & 4,159 & 4,159 & 4,148 \\
\hline  & 5,441 & 5,489 & 5,492 & 5,460 & 4,688 & 4,689 & 4,656 \\
\hline  & 6,673 & 6,751 & 6,771 & 6,583 & 5,736 & 5,749 & 5,516 \\
\hline
\end{tabular}
\({ }^{1}\) For tincelated indivituals, sex of the indivicual.
SOURCE: U.S. Deparment of Comerce, Social and Econocic Staristics Administration, D.S. Bureau of the Census "Characteristics of the Low Income Population: 1971," Ciarrent population Reports, Series p-60, No. 86, p. 18.

\section*{Region}

The United States was divided into four broad geographic regions of approximately equal population. Those regions, which deviate somewhat from the groups used by the Bureau of the Census, are as follows:

\section*{Region}

Northeast

South

Midwest

West

\section*{States Included}

Maine, Vermont, New Hampshire, Massachusetts, Connecticut, Rhode Island, New York, New Jersey, and Pennsylvania

Delaware, Maryland, District of Columbia, West Virginia, Virginia, Kentucky, Tennessee, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, and Arkansas

Ohio, Illinois, Indiana, Michigan, Wisconsin, Minnesota, Iowa, Missouri

Washington, Oregon, California, Nevada, New Mexico, Arizona, Texas, Oklahoma, Kansas, Nebraska, North Dakota, South Dakota, Idaho, Utah, Colorado, Montana, and Wyoming.

HANES is a multistage, stratified, probability sample of loose clusters of persons in land-based segments. In addition, HANES is composed of two distinct examination components-a nutrition screening examination (taken by all examinees) and a more detailed examination taken by a pre-selected subsample of all examinees, ages \(25-74\). For the nutrition screening examination, locations 1-35 and 1-65 constituted national probability samples and for the detailed examination, locations 1-35, 1-65, 66-100 and 1-100 all constitute national probability samples. In other words, HANES is composed of six distinct subsamples of the U.S. population. For a more detalled discussion of the sample design see Series 1, No. 10a.

Since each of these six subsamples is a distinct subsample of the 0.S. population, each subsample requires a different set of weights. The weights are based upon the probability of selection into the sample, adjustments for nonresponse and further adjustments to approximate the U.S. noninstitutionalized population as of the midpoint of each subsample.

In order to select all of those examinees in a particular subsample, i.e. received a particular exam component, it is necessary to exclude all examinees with a weight of zero or blank. It is also necessary to exclude \(a l l\) zero or blank weights because that is the only way to differentiate missing data due to nonresponse from data that is missing because the sample design dictated that a particular examinee was not supposed to receive a particular examination component.

It is suggested that any analyses that are desired by the researcher be performed using the greatest number of examinees possible; that is, if the researcher is interested in an exam component of the nutrition screening examination he should use the weight and consequently the data from the 65 location subsample rather than the 35 location subsample. For the detailed examination, the researcher should use the 100 location subsample rather than one of the others. However, some exam components were only done in a particular subsample; for example, only at the first 35 locations. In that case, the researcher has no choice in selecting a particular subsample.

There may be occasions when a researcher may want to make comparisons of estimates obtained from various subsamples. For example, the prevalence of some disease condition as estimated from the first 35 locations could be compared with an estimate based upon locations \(66-100\). The researcher may also want to formulate hypotheses using one subsample and test those hypotheses using another subsample.

Because of the complete loss of the Hemoglobin and Hematocrit data for three locations in HANES, it was necessary to calculate a new set of sample weights based on 62 locations which would still be representative of the \(U\). S. population. This special sample weight applicable only to these two determinations is located in positions 283-288.

A similar loss of data occurred at three different locations for the determinations of Serum Iron, Total Iron Binding Capacity, and \% Transferrin Saturation. A separate special sample weight based on 62 locations was calculated in order to provide for U. S. population estimates for these data. This sample weight is located in positions 289-294.

The original sample weights located in positions 158-193 of the demographic data should not be used when analyzing the above determinations.

\section*{Red Cell Descriptive Terms}
```

 1. CABOT RINGS
 2. ELLIPTOCYTES (OVALOCYTES) - USE ONLY WHEN THE PREDOMINANT CELL
 3. HEMOGLOBIN C CRYSTALS
 4. HOWELL-JOLLY BODIES
 5. IMMATURE NUCLEATED CELLS
 6. FRAGMENTED RED BLOOD CELLS (HELMET CELLS, ETC.)
 7. ROULEAUX
 8. POLYMACROCYTES (MACROCYTES WITH LOBULATED NUCLEUS)
 9. SIDEROCYTES (PAPPENHEIMER BODIES)
 10. MALARIA PARASITES
11. SCHUFFNER'S DOTS
12. MALARIA CRESCENT SHAPED GAMETOCYTES
13. MAURER'S DOTS
14. MALARIAL DOUBLE RINGS 1-3 TROPHOZOITES
15. OTHER MALARIAL FORMS
16. POLYCHROMATOPHILIA, SLIGHT
17. POLYCHROMATOPHILIA, MARKED
18. BASOPHILIC STIPPLING, SLIGHT
19. BASOPHILIC STIPPLING, MARKED
20. SPHEROCYTES (ANY TYPE), FEW
21. SPHEROCYTES, NUMEROUS
22. TARGET CELLS, FEW
23. TARGET CELLS, MANY
24. SICKLE CELLS, POINTED
25. SICKLE CELLS, BLUNT END
26. BURR CELLS OR SPINOCYTES, FEW
27. BURR CELLS OR SPINOCYTES, MANY
```

\section*{White Cell Descriptive Terms}
35. ALDER'S GRANULATION
36. BASOPHILIC BANDS

37, BASOPHILIC METAMYELOCYTES
38. BASOPHILIC MYELOCYTES
39. HYPOSEGMENTATION (NEUTROPHILS)
40. AUER RODS
41. POLYPLOIDY, DIPLOID CELLS, TETRAPLOID CELLS, ETC.
```

MISCELLANEOUS FINDINGS - GLOSSARY - Continued

```

\section*{White Cell Descriptive Terms - Continued}
42. EOS INOPHILIC BANDS
43. EOSINOPHILIC METAMYELOCYTES
44. EOS INOPHILIC MYELOCYTES
45. IMMATURE CELLS UNIDENTIFIED
46. MITOSES (WHITE CELLS)
47. MONOCYTES, ATYPICAL
48. MONOCYTES, VACUOLATED
49. NEUTROPHILS, VACUOLATED
50. PLASMOCYTES
51. STEM CELLS
52. TART CELLS
53. MARKED LEUKOCYTOS IS
54. TOXIC GRANULATION (NEUTROPHILS), SLIGHT
55. TOXIC GRANULATION, MARKED
56. SMUDGE CELLS, FEW
57. SMUDGE CELLS, MANY
58. HYPERSEGMENTATION OF NEUTROPHILS, FEW
59. HYPERSEGMENTATION OF NEUTROPHILS, MANY
60. MACROPOLYCYTES (ABNORMALLY LARGE NEUTROPHILS)
61. ATYPICAL LYMPHOCYTES OCCASIONAL (0-5\%)
62. ATYPICAL LYMPHOCYTES PLASMACYTOID TYPE (6-20\% of total)
63. MAJORITY OF THE LYMPHOCYTES ATYPICAL
64. DOEHLE (RNA) BODIES

Platelet Descriptive Terms
70. LARGE PLATELETS OR MACROTHROMEOCYTES
71. CLUMPS OF PLATELETS, OCCAS IONAL
72. CLUMPS OF PLATELETS, MANY
73. PLATELETS BIZARRE, OR IRREGULAR SHAPES

\section*{MORPHOLOGICAL INTERPRETATIONS - GLOSSARY}
1. NORMAL (RED CELLS, WHITE CELLS AND PLATELETS)

Red Cell Interpretation
```

2. ACQUIRED HEMOLYTIC PROCESS
3. HYPOCHROMIC MICROCYTOS IS
4. MACROCYTOS IS
5. NORMOCHROMIC MICROCYTOS IS
6. NORMOCYTIC NORMOCHROMIC
7. HYPOCHROMIC MACROCYTOS IS
8. HYPOCHROMIC NORMOCYTOSIS
9. HEMOGLOBINOPATHY, TYPE NOT DESIGNATED
10. HEMOGLOBINOPATHY, HOMOZYGOUS C
11. HEMOGLOBINOPATHY, (SC)
12. HEMOGLOBINOPATHY, SICKLE CELL DISEASE, DREPANOCYTOS IS
13. HEMOGLOBINOPATHY, (HEMOLYTIC CRISIS)
14. HEMOGLOBINOPATHY, (C-THALASSEMIA)
15. HEMOGLOBINOPATHY, (TRAIT S or C)
16. HEMOGLOBINOPATHY, THALASSEMIA - COOLEY'S ANEMIA
17. SPHEROCYTOS IS
18. OVALOCYTOS IS
19. MALARIA
```

White Cell Interpretation
31. INCREASED BANDS
32. EOS INOPHILIA, SLIGHT
33. EOS INOPHILIA, MARKED
34. PELGER-HUET ANOMALY - HYPOSEGMENTATION
35. INFECTIOUS MONONUCLEOS IS
36. LYMPHOPENTA (RELATIVE AND/OR ABSOLUTE)
37. MONOCYTOS IS (RELATIVE AND/OR ABSOLUTE)
38. LYMPHOCYTOSIS, (ABSOLUTE AND/OR RELATIVE)
39. NEUTROPENIA, SLIGHT (ABSOLUTE AND/OR RELATIVE)
40. NEUTROPENIA, MARKED (ABSOLUTE AND/OR RELATIVE)
41. AGRANULOCYTOS IS
42. LEUKEMOID REACTION, LEUCOCYTOS IS
43. MAY-HEGGLIN ANOMALY

Immature cells seen which may be classified as follows:
50. IMMATURE CELLS, NOT IDENTIFIED
51. MAJORITY, IMMATURE PROLYMPHOCYTES AND/OR LYMPHOBLASTS
52. FEW IMMATURE CELLS, MAJORITY MATURE LYMPHOCYTES
53. FEW IMMATURE CELLS, MAJORITY MONOCYTES
54. MAJORITY IMMATURE CELLS, MONOBLASTS OR PROMONOCYTES
55. MAJORITY OF IMMATURE CELL BLASTS AND/OR PROGRANULOCYTES OR PROMONOCYTES
56. MAJORITY OF IMMATURE CELLS MYELOCYTES AND MONOCYTES
57. MAJORITY OF IMMATURE CELLS PROGRANULOCYTES AND/OR GRANULOBLASTS
58. MAJORITY OF TMMATURE CELLS MYELOCYTES OR BANDS
59. MAJORITY OF IMMATURE CELLS PLASMA CELLS
60. BIZARRE IMMATURE RUBRICYTES WITH OTHER IMMATURE CELLS
```

Platelet Interpretations

```
70. THROMBOCYTOPENIA
71. THROMBOCYTHEMIA

Serological testing for the presence of Polio I, II and III; Measles; Rubella Tetanus; Diptheria; and Amebiasis antibodies was done on the Detailed Sample of adults at locations \(1-100\) in HANES \(I\). From the beginning of the survey certain procedural variations occurred which were not actually resolved until the augmentation portion of the survey which began at location 66 .

Illustrative of these variations are titration series which begin at varied levels. As an example, Polio titration series done on serum samples taken during approximately the first 15 locations of HANES I, began at dilutions reactive at "less than 1:20." Later titration series were initialized at dilutions reactive at "less than \(1: 10 . "\) Similar problems exist for all other tests done except for Rubella and Amebiasis. However, since the titration series for Polio at the earlier locations began at a higher titer than is generally employed as a cut-off point for determining protection from, or susceptability to, the disease (less than \(1: 10\) ), the Polio data are more seriously affected by the procedural variations than are the rest of the serological test results.

The concentration of a given antibody in serum is expressed as a "titer." A titer is defined here as the highest dilution that still produces the test reaction with the appropriate antigens. The reciprocal of this quantity then has the following meaning: If 1 in 80 is the endpoint dilution of a serum, then the serum must contain 80 times the concentration of antibody required for the reaction. The reciprocal of the end-point dilution is used on this tape as a definition of the titer.

For Polio I, II and III; Measles; and Rubella, the reciprocals of the actual titration series end-point values are coded in three digits. The first of these digits has a special meaning according to the following convention:

First Digit
7 - reactive, dilution less than 0 - reactive at specified dilution 3 - reactive, dilution greater than
\(\frac{\text { Two Digit Titer Value }}{1 / \mathrm{XX}}\)

Similarly for diptheria, tetanus, and amebiasis, the same convention using the first digit is involved. The titer series, however, may run further before an end-point is reached. The actual titer values then, are given in four digits, rather than two digits as above.

First Digit
7 - reactive, dilution less than 0 - reactive at specified dilution 3 - reactive, dilution greater than

Four Digit Titer Value
1/XXXX
\(1 / \mathrm{XXXX}\)
\(1 / \mathrm{XXXX}\)

There are blocks of missing data which involve largely serology data. collected during the first sixty-five locations of HANES I. Especially affected by these missing data are the results of the Tetanus and Diptheria testing. This is due to deficiencies in record handling, sera which became lost or damaged in the mail, or sera which was damaged in the storage process. There is no reason to believe that these losses occur in a selective pattern, but for analytic purposes magnitude of the lost data compromises the full exploitation of the HANES I sample design.

Because relative freedom from the problems of missing data and variations in the testing procedures, the serology data collected from locations 66 to 100 during the augmentation portion of HANES I may be best suited for analysis purposes. Careful consideration should be given to the selection of data for the purpose of making national estimates. Data from locations l-65 may be excluded from analysis by selecting those records which contain non-blanks in the sample weight field for locations 66-100 on the demographic portion of the data tape. (See Detailed Notes, tape positions 158-193.)

\title{
DETAILED NOTES \\ TAPE POSITIONS 401-409 \\ HANES I SEROLOGY \\ TITRATION SERIES VALUES - POLIO I, II, III
}

SERA GATHERED AT LOCATIONS:


NOTE: Values are the reciprocals of the end points of a titration series.

DETAILED NOTES
TAPE POSITIONS 410-412
hanes I SEROLOGY

\section*{TITRATION SERIES VALUES - MEAṠLES}

\section*{SERA GATHERED AT LOCATIONS:}


NOTE: Values are the reciprocals of the end points of a titration series.

DETAILED NOTES
TAPE POSITIONS 413-415
HANES I SEROLOGY
titration series values - rubella

\section*{SERA GATHERED AT LOCATIONS:}


NOTE: Values are the reciprocals of the end points of a titration series.

\section*{HANES I SEROLOGY}

TITRATION SERIES VALUES - DIPHTHERIA

SERA GATHERED AT LOCATIONS:


NOTE: Values are the reciprocals of the end points of a titration series.

DETAILED NOTES
TAPE POSITIONS 421-425

\section*{RANES I SEROLOGY}

TITRATION SERIES VALUES - TETANUS

SERA GATHERED AT LOCATIONS:


NOTE: Values are the reciprocals of the end points of a titration series.

HANES I SEROLOGY
TITRATION SERIES VALUES - AMEBIASIS

\section*{SERA GATHERED AT LOCATIONS:}


NOTE: Values are the reciprocals of the end points of a titration series.

\section*{DETAILED NOTE}

\section*{TAPE POSITIONS 441-442}

Hemoglobin Phenotyping was performed as a special study during HANES I on 12,282 sample persons. These persons do not represent a scientific subsample of the HANES I sample, although those persons examined at locations 66-100 may be used for estimation purposes by applying the appropriate sample weights.

Cellulose acetate electrophoresis was performed on all specimens. Those specimens that appeared abnormal were then tested further.

\section*{DETAILED NOTE}

\section*{TAPE POSITIONS 443-445, 446-448}

Percent \(A_{2}\) hemoglobin was determined for examined persons with mean corpuscular volume (MCV) values below 70 percent.

Percent F hemoglobin was determined when the presence of this hemoglobin was detected.

DETAILED NOTE
TAPE POSITIONS 483-485

The T4 Murphy-Pattee test was performed for those sample persons who had a T4 test result greater than 7.5. du.s. QOVERNMENT PRINTING OFFICE: 19844211664367

\author{
Detailed note \\ Tape Position 556-558, 559 \\ NHANES I Serum Vitamin A \\ Adjustment Procedure
}

\section*{Preface}

Serum vitamin A values were obtained for 19,088 examinees at locations 1-55 during NHANES I. However, these data have not been previously released due to a quality control problem which occurred during a 6 -month period in 1972. A recent collaborative effort between the Food and Drug Administration (FDA), National Center for Health Statistics (NCHS), and an Expert Panel on Vitamin A Nutriture convened by the Federation of American Societies for Experimental Biology (FASEB), led to the development of an adjustment procedure to correct sample values analyzed during the quality control problem period. The serum vitamin A values given in tape positions \(556-558\) include 3,530 which were adjusted by this procedure. The adjustment procedure lowered sample values obtained during the quality control problem period by \(8.7 \%\). The development and evaluation of the adjustment procedure is described in more detail in the following discussion.

In order to identify which sample values have been adjusted, an adjustment code variable is provided in tape position 559. It is recommended that data tape users read the following description of the adjustment procedure before analyzing the serum vitamin A data. For a description of how these data have been analyzed previously, the user is referred to the following report: "Assessment of the Vitamin A Nutritional Status of the U.S. Population Based on Data Collected in the Health and Nutrition Examination Surveys." This report is available from the Life-Sciences Research Office of the Federation of American Societies for Experimental Biology, 9650 Rockville Pike, Bethesda, MD 20814.

Introduction - The Expert Panel on Vitamin A Nutriture (EPVAN), convened by the Life Sciences Research Office of FASEB, was asked to examine NHANES I serum vitamin \(A\) data as part of its review of the HANES data. A total of 18,452 sera samples were available from NHANES I for serum vitamin A analysis; however, quality control (QC) problems related to a contaminated reagent affected \(3,432^{*}\) samples analyzed during a six-month period extending from May 5 through November 1; 1972. Compared to values reported during other periods of the survey, \(Q C\) pool values during the problem period were approximately 20 percent higher than normal \(Q C\) values, and concurrently analyzed sample person serum vitamin A values were approximately 10 percent higher than normal sample values.

Although the EPVAN recognized the importance of using the entire NHANES I data base to provide national baseline serum vitamin \(A\) data, the members were concerned about potential biases if the problem data were included in their original form. The discrepancy in deviation between \(Q C\) values and observed sample person values precluded the usual approach for this type of problem, i.e., use of QC values to adjust sample person values. Therefore, FDA and NCHS were requested by the EPVAN to evaluate other approaches for handling the "problem" data.

Proposed Adjustment Methods - Two possible approaches for dealing with the problem data were proposed by FDA/NCHS staff:

Method I - Discard all 3,432 samples analyzed during the problem period

\footnotetext{
* The EPVAN only reviewed serum vitamin \(A\) data for persons 3-74 years, so this value does not include 98 children under age 3 years whose serum vitamin \(A\) was analyzed during the problem QC period.
}
and restrict the statistical analysis of serum vitamin \(A\) to the remaining 15,110 of the NHANES I samples.

Method II - Replace all observed values for the problem period by adjusted values.calculated by applying a simple multiplicative adjustment factor to the observed values.

Based on a preliminary evaluation of statistical issues associated with the two methods, FDA/NCHS statisticians concluded that Method II was preferable to Method I. This preference was based primarily on the following statistical and resource considerations inherent in Method I:
a) 3,432 sample observations would be discarded, resulting in the loss of the entire data set for some Primary Sampling Units (PSU's). The loss of entire PSU's severely undermines the NHANES I sample design and could lead to biased estimates for the original target population.
b) The power of statistical tests would be diminished due to both the reduced sample size and to less stable variance estimates caused by loss of the entire data set for some PSU's.
c) The loss of entire PSU's also implied that new pseudo strata and PSU codes would be required and a new BRR variance data tape (based on a. new orthogonal matrix) would have to be created.
d) New post-stratification adjustment factors would be required for the reduced data set.

Although the EPVAN concurred with the preliminary statistical evaluation presented by FDA/NCHS statisticians, they both expressed concern about two issues associated with Method II:
a) could a single adjustment factor work uniformly well
in adjusting data for all demogAaphic subgroups of interest?
b) would an adjustment factor that was selected to shift a location parameter (the median) of the problem values to the level of the good values distort the higher order moments of the distribution, ie., kurtosis, skewness, etc.?

The EPVAN requested that \(\mathrm{FDA} / \mathrm{NCHS}\) staff develop a methodology for calculating the adjustment factor and then conduct a set of analyses to address the issues cited above.

Calculation of the Adjustment Factor - The following steps describe the procedure used to calculate the adjustment factor. The calculation was based on the 20 age-sex-race cells defined previously by the EPVAN for presentation of data.
1. For each of the 20 age-sex-race cells, the \(25 \mathrm{th}, 50 \mathrm{th}\), and 75 th percentiles were estimated separately for the good and problem data. Thus, let:
\(\hat{P}_{1}, i \dot{j}=\) estimate of the \(i\) th percentile for the \(j\) th age-sex-race cell using the good data.
\(\hat{P}_{2}, i \dot{j}=\) estimate of the \(i\) th percentile for the \(\dot{f}\) th age-sex-race cell using the problem data.
\[
(i=1,2,3 ; j=1,2, \ldots \ldots, 20)
\]
2. The proportional difference between the estimates based on the problem data and the estimates based on the good data were calculated for each percentile and for each age-sex-race cell. That is:
\[
\Delta_{i j}=\frac{\hat{p}_{2 i f}-\hat{p}_{2 i f}}{\hat{p}_{1 i j}}
\]
\[
\text { for } i=1,2,3 ; j=1,2, \ldots \ldots, 20
\]
3. For each percentile \(i\), the estimates \(\Delta i j\) were reasonably consistent across the twenty age-sex-race cells. Thus, it appeared reasonable to pool the estimated percent differences across the age-sex-race cells. The estimates were pooled in such a way that those based on larger sample sizes would have larger weight. Since the sample size within a cell was approximately proportional to the population size of the cell, each estimated proportional difference was weighted by the relative population of its age-sex-race cell. That is, the pooled proportional difference estimates for the th percentile were defined to be: \(\Delta_{i}=\sum_{j=1}^{2} \pi_{j} \Delta_{i}{ }_{j}\)
where \(\pi j\) is the U.S. Census Bureau estimate of the relative population size for age-sex-race cell \(j\) at the midpoint of NHANES I.
4. The pooled proportional difference estimates for the \(25 \mathrm{th}, 50 \mathrm{th}\), and 75 th percentiles were found to be \(0.0902,0.0876\), and 0.0821 , respectively. Although these estimates are not exactly equal, it appeared reasonable to use the average to define an "overall" multiplicative adjustment factor. Thus, the average overall proportional difference estimate was
\[
\begin{aligned}
\Delta . . & =\sum_{i=1}^{3} \Delta_{i} \cdot / 3 \\
& =0.0866
\end{aligned}
\]
and the overall multiplicative factor was
\[
\begin{aligned}
\alpha \ldots & =1-\Delta . . \\
& =0.9134 .
\end{aligned}
\]

\section*{Analyses Performed to Evaluate Adjustment Method}

The analyses performed to evaluate the adjustment method included the following:
a) comparisons of NHANES I serum vitamin A distributions ("good" period only) with NHANES II serum vitamin A distributions for children ages 3-11 years.

The EPVAN requested that the NHANES II distribution be based only on data collected from locations that matched those sampled during the NHANES I problem QC period. However, data from the NHANES I problem QC period could not be compared to the same locations in NHANES II because NHANES II did not necessarily return to the same PSU's used in NHANES I, nor to the same states as were sampled in NHANES I. Even if the same states were used in both surveys, the actual locations may have differed in terms of important socioeconomic variables, thus making it difficult to match locations in NHANES I and NHANES II.
b) comparisons of NHANES I serum vitamin A distributions between the "good" versus "problem" QC time periods by various one, two-, threeand four-way combinations of selected demographic variables (e.g., age, sex, race, region, poverty status, and urban/rural residence), as requested by the EPVAN. These distributions were then compared with the corresponding distributions produced after applying the adjustment factor.

When comparing NHANES I vitamin A distributions between "good" and "problem" QC periods, NCHS staff used age and sex to define all subgroups because physiological differences in serum vitamin \(A\) occur by age and sex. Thus, only distributions that included both these variables were examined. For example, region was not included as a criterion for defining subgroups in a one- or two-way analysis because of the difficulty in interpreting regional data without adjusting for age and sex differences.

Additionally, NCHS staff concluded that a cell size of at least 100 persons was needed to compare cumulative distributions for two groups. All the twoway (age-sex) cells, and eleven of the 20 three-way (age-sex-race) cells contained enough persons to compare the distributions from the good versus problem periods. However, four-way distributions were not possible (e.g., age-sex-race-region) due to inadequate cell sizes.

Due to time and resource constraints, it was not possible to graph all two-way or three-way distributions of good vs. problem data and good vs. adjusted problem data. Therefore, cumulative distribution graphs for selected two-way and three-way distributions were prepared for groups most likely to have a high prevalence of low serum vitamin A-- children 3-5 years, and women 18-44 years. Examples of these graphs are shown in Figures 1 and 2. Figure 1 is a graph comparing good vs. problem data for 3-5 year-old white males, while figure 2 is the corresponding graph comparing good vs. adjusted problem data for this group. In addition to comparing distributions graphically, the percent of persons with serum vitamin A levels below \(20 \mathrm{Mg} / \mathrm{dl}\) were compared
before and after applying the adjustment factor (Table 1). Results of these analyses indicated that good agreement existed between distributions based on the "good" QC period data and distributions based on the adjusted "problem" QC period data. (Note: The percentages shown in Table lare based on unweighted data because the sample weights could not be used with the data from the "good QC period only." Because the data were unweighted, the percents presented in Table 1 do not necessarily match those based on the weighted data which are shown in the FASEB vitamin A report.

Recommendations - Based on the time constraints of the EPVAN and results of the above analyses; NCHS and FDA recommended the multipicative adjustment method for handling the NHANES I vitamin A data collected during the problem QC period for the following reasons:
A. there were no systematic biases in the pattern of differences between good and problem QC periods for the 25 th, 50th, and 75th percentiles within or among any of the age-sex-race groups examined.
B. application of an overall adjustment factor resulted in fairly uniform distributions across the entire range of vitamin \(A\) values, including both low and high serum vïtamin A values. Thus, prevalence estimates for those with low serum vitamin A levels were similar regardless whether they were based on adjusted or unadjusted NHANES I vitamin A data.

Table 1. Comparison of Percent with Serum Vitamin A Vaiues \(\angle 20\) by Age, Sex, and Race Gcoups, NHANES I Good QC Period vs. Combined Good and Adjusted Problem QC" Periods, Unweighted Data
\begin{tabular}{ll}
\hline & \\
Race/Sex/Age & \begin{tabular}{c} 
Percent with Serum Vitamin \(A<20\) Ug/dl \\
Good QC Period \\
Only
\end{tabular} \\
& Good and Adjusted Problem \\
QC Periods Combined
\end{tabular}

White
MALES
\begin{tabular}{rrr}
\(3-5\) years & 2.2 & 2.4 \\
\(6-11\) years & 0.7 & 0.6 \\
\(12-17\) years & 0.0 & 0.0 \\
\(18-44\) years & 0.3 & 0.2 \\
\(45-74\) years & 0.2 & 0.1
\end{tabular}

FEMALES
3-5 years
0.7
1.0

6-11 years
0.8
0.7

12-17 years
0.3
0.3 18-44 years
0.1
0.2

45-74 years
0.1
0.2

Black
MALES
\(3-5\) years 4.4
4.4
4.7

6-11 years
1.8
1.4

12-17 years
0.0
0.0

18-44 years
0.0
0.0

45-74 years
0.0
0.0

FEMALES
\(\begin{array}{ll}3-5 \text { years } \quad 6.5 & 5.6\end{array}\)
\(6-11\) years
2.4
. 6
12-17 years
0.5
0.4 18-44 years
0.7
0.5

45-74 years
0.3
0.2

\footnotetext{
* Adjusted vitamin \(A\) values are \(8.66 \%\) lower than original values.
}```

