Virus Name: Chenuda Abbreviation: CNUV

SALS Level Status Select Agent

Possible Arbovirus No 2

SALS Basis

Results of SALS surveys and information from the Catalogue.

Other Information

Antigenic Group Kemerovo

SECTION I - Full Virus Name and Prototype Number

Original Date Submitted

Ar 1170 12/9/1984

Family Genus Reoviridae **Orbivirus**

Information From Address

R.M. Taylor School of Public Health, Warren Hall, University of California, Berkeley, California

Information Footnote Reviewed by editor

Section II - Original Source

Isolated By (name) Isolated at Institute R.M. Taylor, et al. (1) NAMRU-3, Cairo, Egypt

Host Genus Species Host Age/Stage Nymphs + adults

Argas reflexus hermanni

Sex Not Answered

Isolated From Isolation Details

Signs and Symptoms of Illness Arthropod

Time Held Alive before Inoculation

Collection Method Collection Date By hand 2/4/1954

Place Collected (Minimum of City, State, Country)

Chenuda Village, Nile Delta, Egypt

Latitude Longitude 30° N 32° E

Macrohabitat Microhabitat Method of Storage until Inoculated Cracks in dried mud inner walls Pigeon house Live; at ambient temperature

Footnotes

Section III - Method of Isolation

Inoculation Date

2/5/1954

Animal (Details will be in Section 6)

nb mice

Route Inoculated Reisolation

ic and sc No

Other Reasons

New virus; isolation of identical virus from otherpools of same tick.

Homologous Antibody Formation by Source Animal

Test(s) Used

Footnotes

Section IV - Virus Properties

Physicochemical

Sedimentation Coefficients(s) Pieces (number of genome segments) Infectivity

(S)

6.8 dex

Carbohydrate Percentage wt, of Virion Protein Lipid

Virion Polypeptides: Number Details

Non-virion Polypeptides: Number Details

Virion Density Sedimentation Coefficients(s)

Nucleocapsid Density Sedimentation Coefficients(s)

(S)

Stability of Infectivity (effects)

pH (infective range) Virus labile at pH 3.0 (9)

Lipid Solvent (ether - % used to test) After Treatment Titer Control Titer

1:4 3.2 dex

Lipid Solvent (chloroform) After Treatment Titer Control Titer

Control Titer Lipid Solvent (deoxycholate) After Treatment Titer 1:1000 3.0 dex 7.1 dex

Other (formalin, radiation)

Relatively stable to lipid solvents

Virion Morphology

Shape Dimensions Orbivirus morphology 65-80 nm

Mean Range nm nm

Measurement Method Surface Projections/Envelope

Nucleocapsid Dimensions, Symmetry By electron microscopy (8) No envelope present (8)

Icosahedral symmetry (8)

Morphogenesis

Site of Constituent Formation in Cell Site of Virion Assembly Site of Virion Accumulation

Inclusion Bodies Other

Hemagglutination

Hemaggiutination Antigen Source Erythrocytes (species used)

No SMB ext. by acetone-ether Goose

pH Range pH Optimum

6.0-7.0

Temperature Range Temperature Optimum

Remarks

Serologic Methods Recommended

CF, NT

Footnotes

Section V - Antigenic Relationship and Lack of Relationship to Other Viruses

Has been examined by CF and found unrelated to following viruses [2]: trivittatus-7941 (64), Anopheles A (64), Anopheles B (128), bat virus-Burns (128), Rio Bravo (128), Bunyamwera (64), Bwamba (32), Cache Valley (64), California (BFS-283)(32), chikungunya (256), Colorado tick fever (Florio)(64), dengue (Hawaii)(>8), dengue (NGB)(64), EEE (85)(128), herpes simplex (8), herpes simplex (E. Johnson) (32), Ilheus (256), Jap. enc. (Nakayama)(128), LCM (512), Mayaro (64), mouse virus-FA-660 (16), mouse virus-GD-7 (16), MVE (128), Ntaya (128), Powassan (128), RSSE (8), Sandfly fever-Sicilian (128), Semliki Forest (>512), Sindbis (128), St. Louis (Parton)(128), Turlock (64), Uganda S (128), WEE (85)(128), Wyeomyia (>512), YF-Jungle (256), YF (17D)(32), Zika (128). Cross tests were made with Chenuda Ar-1170 (128). The numbers in parentheses represent the reciprocal of the dilution of immune serum required to obtain complete complement-fixation with the homologous antigen. Though the prototype strains of Quaranfil (Ar-1113) and Chenuda (Ar-1170) and an Egyptian strain Ar-1304 used as prototype of Nyamanini did not show crossing by CF, two other Egyptian strains classed as Nyamanini did show slight one-way crossing with Quaranfil or Chenuda.

Casals [3] was unable to detect antigenic crossing of Quaranfil, Nyamanini and Chenuda, and has placed CNU in the Kemerovo group.

McIntosh [4] has reported isolation of a virus Ar-3441 from Argas peringueyi in South Africa which is very closely related if not identical with CNU.

Section VI - Biologic Characteristics

Virus Source (all VERTEBRATE isolates)

Lab Methods of Virus Recovery (ALL ISOLATIONS)
Newborn mice

Cell system (a)	Virus passage history (b)	Evidence of Infection							
		СРЕ			PLAQUES			Growth Without CPE	
		Day (c)	Extent (d)	Titer TCD50/ml (e)	Day (c)	Size (f)	Titer PFU/ml (e)	+/- (g)	
Vero (CL)	SM 19				5	2 mm	6.9* (6)		
LLC-MK2 (CL)					6	1 mm	7.2 (6)		
BHK-21	SM 18	2	4+	7.5* (5)					

Produces CPE and plaques in tissue culture. Grows best in duck kidney or embryo tissue culture (2), and BHK cells (5).

^{*} Expressed in dex

Vertebrate (species and organ) and arthropod	No. isolations/No. tested	No. with antibody/No. tested Test used	Country and region
Argas r. hermanni	16/60 ^(a) pools		Nile Delta, Egypt (1)
Man		0/191 CF	Lower Egypt (10)
Camels		5/137 CF	
Buffalo		3/108 CF	
Sheep		0/100 CF	
Pigs		2/101 CF	
Dogs		4/101 CF	
Donkeys		3/187 CF	
Rodents		1/94 CF	
Hyalomma asiaticum	1		Uzbekistan, USSR (11)

⁽a) Not all of 16 isolations of virus from hermanni ticks have been adequately studied for exact classification but three (Ar-1170, Ar-1152 and Ar-1733) have been typed by CF as Chenuda virus. One isolation from these ticks was typed as Quaranfil virus.

Experimental host and age	Passage history and strain	Inoculation Route- Dose	Evidence of infection	(days)	Titer log10/ml
Mice (nb)	Initial	ic 0.02	Paralysis, death	3-5	6.0
Mice (nb)		ip 0.02	None		
Mice (nb)		sc			
Mice (wn)		ic 0.03	None (b)		
Mice (wn)		ip			
emb. eggs (8 day)	P-3	ys	Death	2-4	6.0
chicks (3-10 day)	P-4 to P-5	sc 0.1	None		
pigeon squab(2 wk)		sc 0.1	None		
guinea pigs (yg ad)		sc 0.1	None		
hamsters (yg ad)		sc 0.1	None		

⁽b) After 6 to 8 passages, became adapted to adult mice and AST shortened to 2-3 days.

Arthropod species & virus source(a)	Method of Infection log10/ml (b)		Incubation period (c)		Transmision by bite (d)		Assay of arthropod, log10/ml (e)		
	Feeding	Injected	Days	°C	Host	Ratio	Whole	Organ	System
Argas arboreus, p-11 Ar 1152	Ar 1152, infect days.	ted by punctur	e. <mark>Titer in tri</mark>	turated	ticks inoc.	into mice	= 5.3 after	10 days; 3	3.7 after 11
A. hermanni	Infected by pu	ncture with 13	th pass. Ar	1152. T	iter by mo	use inoc. a	after 18 day	s 2.0.	
Efforts to infect ticks by fe	eding or to trans	mit by bite we	re unsatisfa	ctory.					
		Section	on X - Histor	oatholo	gy				
haracter of lesions (spec m: CNS - congestion and anglion cells.		ial hemorrha <u>c</u>			crosis, pe	erivascula	r cuffing a	nd degene	eration of
clusion Bodies			<u>ınırar</u>	nuclear					
rgans/Tissues Affected									
ategory of tropism									
atogory or a opioni									
ategory or a opioni		Section	n XI - Huma	n Disea	ise				
		Section Residual	n XI - Huma	n Disea	ise	Death			
n Nature		and the second		n Disea	ise	Death			
n Nature Subclinical		Residual		n Disea	ise	Death			
n Nature Subclinical Clinical Manifestations		Residual	е			Death			
n Nature Subclinical Clinical Manifestations		Residual Overt Diseas Category (i.e.	e febrile illne	ss, etc.)	Death			
n Nature Subclinical Clinical Manifestations		Residual Overt Diseas Category (i.e.	е	ss, etc.)	Death			

Section IX - Experimental Arthropod Infection and Transmission

Section XIII - References

- Taylor, R.M., et al. 1966. Am. J. Trop. Med. Hyg. 15:75.
- 2. Taylor, R.M., et al. 1966. Am. J. Trop. Med. Hyg. 15:87-90.
- 3. Casals, J. 1970. Misc. Publ., Entom. Soc. of America 6:327.
- 4. McIntosh, B.M. Personal communication.
- Karabatsos, N., et al. 1967. Am. J. Trop. Med. Hyg. 16:99-105.
- 6. Stim, T.B. 1969. J. Gen. Virol. 5:329-338.
- 7. Attia, M.A.M. 1970. Acta Virol. 14:145-149.
- 8. Murphy, F.A., et al. 1971. J. Gen. Virol. 13:273-288.
- 9. Borden, E.C., et al. 1971. J. Gen. Virol. 13:261-271.
- 10. Darwish, M.A., et al. 1975. J. Egypt Pub. Hlth. Assoc. 50:37-42.
- 11. Chumakov, M.P., et al. 1978. Unpublished.

Remarks

Strain Ar-1152 was initially sent to the Rockefeller Foundation Virus Laboratory in New York and has been used by Casals as the prototype for this virus, but Ar-1170 was used mainly for Laboratory studies at NAMRU-3 and is therefore registered as the prototype strain. Ar-1152 and Ar-1170 in comparison with each other by both CF and NT appear to be identical.