Mercury is widespread in the environment and originates from natural and anthropogenic sources. The general population may be exposed to three forms of mercury: elemental, inorganic, or organic (primarily methylmercury). The concentration of total mercury, in urine, is a biomeasure of exposure primarily to elemental and inorganic mercury. Elemental and inorganic mercury exposure can result from mercury spills, dental amalgams, and occupational exposures. Both elemental and inorganic mercury are nephrotoxic and neurotoxic. Health effects related to low exposure in the general population are not well defined. In the 1999-2002 NHANES, urine mercury levels were measured in all women aged 16-49 years. From 2003-2004 forward, urine mercury levels were measured in a one-third subsample of participants aged 6 years and older.
Participants aged 6 years and older, on a one-third sample, were eligible.
Urine specimens were processed, stored and shipped to Division of Laboratory Sciences, National Center for Environmental Health, National Centers for Disease Control and Prevention, Atlanta, Georgia.
Urinary mercury concentrations are determined by ICP-DRC-MS (Inductively Coupled Plasma Dynamic Reaction Cell Mass Spectroscopy). This multielement analytical technique is based on quadrupole ICP-MS technology and includes DRC™ technology. Coupling radio frequency power into a flowing argon stream(seeded with electrons) creates the plasma, the heat source, which is ionized gas suspended in a magnetic field. Predominant species in the plasma are positive argon ions and electrons. Diluted urine samples are converted into an aerosol using a nebulizer inserted within the spray chamber. A portion of the aerosol is transported through the spray chamber and then through the central channel of the plasma, where it is exposed to temperatures of 6000-8000 ºK. This thermal energy atomizes and ionizes the sample. The ions and the argon enter the mass spectrometer through an interface that separates the ICP, which is operating at atmospheric pressure (approximately 760 torr), from the mass spectrometer, which is operating at approximately 10-5 torr. The mass spectrometer permits detection of ions at each mass-to-charge ratio in rapid sequence, which allows the determination of individual isotopes of an element. Once inside the mass spectrometer, the ions pass through the ion optics, then through DRC™, and finally through the mass-analyzing quadrupole before being detected as they strike the surface of the detector. The ion optics uses an electrical field to focus the ion beam into the DRC™. The DRC™ component is pressurized with an appropriate reaction gas and contains a quadrupole. Electrical signals resulting from the detection of the ions are processed into digital information that is used to indicate the intensity of the ions and subsequently the concentration of the element. Traditionally ICP-MS has been a trace analysis technique and the typical measurement ranges from 0.1µg/L to around 100 µg/L. DRC technology provides additional control of ICP-MS sensitivity; therefore appropriate adjustments of the reaction cell parameters can significantly extend the useful concentration measurement range. In this method, iodine (isotope mass 127), tellurium (isotope mass 130), mercury (isotope mass 202) and bismuth (isotope mass 209) are measured in urine by ICP-DRC-MS using 100% argon as the Dynamic Reaction Cell™ (DRC) gas utilizing collisional focusing. Urine samples are diluted 1+1+ 8 (sample+ water + diluent) with water and diluent containing tellurium and bismuth for internal standardization.
There were no changes to the site or laboratory from the previous two year cycle.
Detailed instructions on specimen collection and processing can be found in the NHANES Laboratory/Medical Technologists Procedures Manual (LPM).
Read the General Documentation on Laboratory Data file for detailed data processing and editing protocols. The analytical methods are described in the Description of Laboratory Methodology section above.
The NHANES quality control and quality assurance protocols (QA/QC) meet the 1988 Clinical Laboratory Improvement Amendments mandates. Detailed QA/QC instructions are discussed in the NHANES Laboratory/Medical Technologists Procedures Manual (LPM). Read the General Documentation on Laboratory Data file for detailed QA/QC protocols.
NHANES Survey Design:
Subsample weights
Urinary mercury was measured in a one third subsample of persons 6 years and over. Special sample weights are required to analyze these data properly. Specific sample weights for this subsample are included in this data file and should be used when analyzing these data.
Survey design and basic demographic variables
The analysis of NHANES laboratory data must be conducted with the key survey design and basic demographic variables. The NHANES Demographic Data File contains demographic and sample design variables.
Variance estimation
The analysis of NHANES laboratory data must be conducted with the key survey design and basic demographic variables. The recommended procedure for variance estimation requires use of stratum and PSU variables (SDMVSTRA and SDMVPSU, respectively) in the demographic data file.
Links to NHANES Data Files
This laboratory data file can be linked to the other NHANES 2009-2010 data files using the unique survey participant identifier SEQN.
Detection Limits
The lower detection limit for urinary mercury was constant during this two-year cycle: Urinary Mercury= 0.08 ng/mL. In cases where the result was below the limit of detection, the value for that variable is the detection limit divided by the square root of two.
Other NHANES data files
The Household Questionnaire Data Files contain demographic data, health indicators, and other related information collected during household interviews. The Household Questionnaire Data Files also contain all survey design variables and sample weights required to analyze these data. The Phlebotomy Examination file includes auxiliary information on duration of fasting, the time of day of the venipuncture, and the conditions precluding venipuncture. The Household Questionnaire and Phlebotomy Examination files may be linked to the laboratory data file using the unique survey participant identifier SEQN.
Please refer to the NHANES Analytic Guidelines and the on-line NHANES Tutorial for further details on the use of sample weights and other analytic issues.
Code or Value | Value Description | Count | Cumulative | Skip to Item |
---|---|---|---|---|
0.06 to 19.33 | Range of Values | 2865 | 2865 | |
. | Missing | 76 | 2941 |
Code or Value | Value Description | Count | Cumulative | Skip to Item |
---|---|---|---|---|
6 to 489 | Range of Values | 2878 | 2878 | |
. | Missing | 63 | 2941 |
Code or Value | Value Description | Count | Cumulative | Skip to Item |
---|---|---|---|---|
0 to 476882.95898 | Range of Values | 2941 | 2941 | |
. | Missing | 0 | 2941 |