Quality Control Requirements for Microbiology Identification Systems

Nancy Anderson, M.M.Sc.
Senior Health Scientist
Laboratory Practice Standards Branch
Division of Public Health Partnerships
Laboratory Systems

CLIAC Meeting
February 17, 2005
What are the appropriate CLIA quality control (QC) procedures for microbiology identification (ID) systems (bacterial and yeast) that utilize panels or cards containing multiple substrates/reagents to generate the organism identification?
Background
QC Requirements for Microbiology Identification (ID) Systems

• CLIA regulations require the laboratory to check each batch (in-house), lot number (commercial) and shipment of reagents, discs, stains, antisera and identification systems for positive and negative reactivity and graded reactivity, if applicable.

• CLIA defines ID systems as “systems using two or more substrates or reagents, or a combination”.
Varying numbers of control organisms need to be tested to check positive and negative reactivity for each substrate/reagent on ID systems that include multiple reactions per panel.
Commercially Available Microbiology ID Systems

<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Systems</td>
<td>11 Manual</td>
</tr>
<tr>
<td></td>
<td>2 Semi-automated</td>
</tr>
<tr>
<td></td>
<td>7 Automated</td>
</tr>
<tr>
<td>Identification Panels</td>
<td>56</td>
</tr>
<tr>
<td>Substrates/Reagents per Panel</td>
<td>2-95</td>
</tr>
<tr>
<td>QC Organisms Required per Panel</td>
<td>4-8</td>
</tr>
<tr>
<td>Approximate Cost per Panel</td>
<td>$4-$16</td>
</tr>
</tbody>
</table>
FDA Process

- In 1998, FDA ceased 510(k) premarket performance evaluations of automated and manual microbiology ID systems

- FDA does not review QC protocols or labeling for microbiology ID systems to meet CLIA requirements
Current Considerations
Manufacturer Request

- Two letters have been submitted to CLIAC suggesting QC requirements for Vitek ID products are excessive.

- For Vitek products, the manufacturer recommends one QC microorganism to check each shipment/lot number of ID cards.

- Previously, the manufacturer recommended testing up to eight microorganisms per shipment of ID cards to check positive/negative reactions for each substrate/reagent.
Determine Appropriate QC

- For each panel/card, is it necessary to check each substrate/reagent for positive/negative reactivity with each shipment/lot number?

- Is there an alternative to testing each reagent/substrate?

- Should a minimum number of control organisms be specified?
Process for Consideration

Since CLIA QC requirements must be general and cannot be specific to a particular manufacturer or test system, how should appropriate QC be determined?
Previous Surveys
American Society for Microbiology (ASM) Proposal

• In 1995-1996 ASM asked CLIAC to consider the appropriateness of CLIA microbiology QC requirements

• ASM agreed to collect QC performance data and share the results with CLIAC

• Based on survey data reflecting low failure rates, ASM suggested a decrease in frequency for QC testing of reagents and stains
ASM conducted two surveys on QC testing failures for commercial microbiology reagents and stains.

8/30/95, 9/25/96 - Data were presented to CLIAC representing 304 clinical microbiology laboratories and 14,731 lots of 21 different tests.
ASM Survey Findings

- Failure rate data suggested CLIA QC testing frequencies for microbiology reagents/stains were excessive.

- Based on survey results, ASM proposed laboratories be required to test only new lot numbers of commercial reagents that had a 98 percent or greater success rate.
1/24/03 - Based on data provided by ASM, CLIA regulations were revised to decrease frequency of QC testing for commercial microbiology reagents/stains
Changes in Microbiology QC Requirements

<table>
<thead>
<tr>
<th>Regulations Prior to 2003</th>
<th>Current Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology</td>
<td></td>
</tr>
<tr>
<td>Check positive/negative reactivity –</td>
<td>Check positive/negative reactivity –</td>
</tr>
<tr>
<td>Daily: reagents and DNA probes</td>
<td>Each batch, lot number and shipment of reagents, disks, stains, antisera and identification systems. In addition, check antisera every six months after opening or preparation</td>
</tr>
<tr>
<td>Weekly: bacitracin, optochin, ONPG, X, and V discs or strips</td>
<td></td>
</tr>
<tr>
<td>Monthly: antisera</td>
<td></td>
</tr>
<tr>
<td>Mycology</td>
<td></td>
</tr>
<tr>
<td>Check positive/negative/intended reactivity -</td>
<td>Check positive/negative/intended reactivity -</td>
</tr>
<tr>
<td>Daily: lactophenol cotton blue</td>
<td>Each batch, lot number and shipment of reagents, disks, stains (lactophenol cotton blue), antisera, and identification systems</td>
</tr>
<tr>
<td>Weekly: fungal identification tests</td>
<td></td>
</tr>
</tbody>
</table>
Future Plans
Need for Data

- CDC is working with ASM to gather QC performance data for microbiology ID systems.

- Survey is being planned to include—
 - Cross section of microbiology laboratories
 - Instruments, semi-automated, and manual methods
 - QC performance data from all manufacturers of bacterial and yeast ID systems
Use of Data

- Data will be used to determine
 - Stability
 - Error rates
 - Whether it is necessary to check each reagent/substrate in ID panels for positive/negative reactivity to ensure the correct organism ID

- If data support changing the QC procedures, these revisions will be published in the CLIA interpretive guidelines and disseminated to laboratories