Laboratory Medicine Best Practices: Transparent Methods for Patient-Centered, Evidence-Based Quality Improvement
Presented by

Robert H. Christenson, PhD, DABCC, FACB
Professor of Pathology, Medical, and Research Technology,
University of Maryland School of Medicine

Diana Mass, MA, MT(ASCP)
Director and Clinical Professor (Retired)
Clinical Laboratory Sciences Program
Arizona State University
Today’s Objectives

• Describe differences between AHRQ and LMBP Efforts.
• Discuss the need for the use of evidence based laboratory medicine to insure patient-centered outcomes.
• Describe the LMBP A-6 Cycle that includes published studies and unpublished findings.
• Review the LMBP topic selection process and a pilot study of practices to reduce blood culture contamination rates.
• Note LMPB on-line tutorials to educate laboratory professionals about quality improvement study designs.
• Describe key efforts to sustain the LMBP Initiative and gain support from official bodies.
LMBP Systematic Review Steps

ASK
Frame focused question(s) to be answered by the evidence

ACQUIRE
Identify sources and collect potentially relevant studies

APPRAISE
Create an evidence base by applying screening and evaluation/rating criteria

ANALYZE
Synthesize and rate overall strength of body of evidence (quality, effect size, consistency)

APPLY
Disseminate findings for review and local application

AUDIT/ASSESS
Evidence Based Systematic Reviews

Medical Test Reviews-AHRQ
Laboratory Medicine Best Practices-CDC
Writing the Report

• Follow a standard template for the overall report:
 • Abstract and Executive Summary
 • Chapter 1. Introduction
 • Chapter 2. Methods
 • Chapter 3. Results
 • Chapter 4. Discussion
• Ordering of subsections may vary but:
 • Should adhere to principles of clarity
 • Should be consistent with key questions
 • May be guided by PICOTS

PICOT(S) = population, intervention, comparator, outcome, time frame, and study design or setting
Agency for Healthcare Research Quality

• **Medical Test Reviews**

• **Test**-A medical test is a kind of medical procedure performed to detect, diagnose, or evaluate disease, disease processes, susceptibility, and determine a course of treatment

Laboratory Medicine Best Practices

• Patient-centered, transparent systematic reviews

• **Practices**- Protocols, procedures, policies, techniques, processes, systems, standards, incentives, activities, and interventions that are used to provide healthcare to patients.
AHRQ Topic Development

• Topic development begins with a **claim**
 – Testing strategy’s impact on health outcome
 – Test’s clinical role
 – Potential advantages over existing test or strategy

LMBP Topic Development

• Topic development begins with:
 • **IOM priorities:** Safe, Timely, Effective, Efficient, Equitable, Patient-Centered
 • **Evidence:** At least modest; **Outcome measure(s):** At least one relevant outcome; **Practices:** At least 3 practices affecting performance or outcomes related to a quality issue.
LMBP

Formulate an Answerable Question

the PICO system

• Population (Patient Description)
• Indicator (Practice)
• Comparator (Control practice)
• Outcome (Health-related, Economic)
AHRQ

Formulate an Answerable Question
the PICOT(S) system

- **Population** (Description of patients)
- **Indicator** (test, intervention)
- **Comparator** (Control, Gold Standard)
- **Outcome** (Detect, Diagnose, evaluate)
- **Time Frame** (when to test)
- **Study Design or Setting** (RCT, ED)
US Preventive Services Task Force
Analytic Framework
LMBP Analytic Framework

Quality Issue/Problem
- Clear statement of issues and problems related to the topic

Preventability/Improvement
- Listing of specific measures that may be targets for Improvement.
- Ideally quantitative measures

Intermediate Outcomes
- Listing of surrogate outcomes associated with patient/health outcomes

Health Outcomes
- Outcomes that impact directly on patients

Interventions/Practices
- Listing of practices, strategies & interventions that may be implemented.

Harms (Systemic & Systematic)
- Potential risk of practices
Medical Test Review

Claim: health outcome, clinical role, advantages

Do patients having the test fare better than similar patients who do not have the test?
Do patients at institutions using the laboratory medicine best practice recommendations fare better than similar patients where the best practice recommendations are not implemented?
LMBP and Arthur Rubinstein?

A guy once asked pianist Arthur Rubinstein "Pardon me sir, but how do I get to Carnegie Hall?" and Rubinstein replied

• Practice
• Practice
• Practice
LMBP Systematic Review Methods
A-6 Cycle

QUALITY GAP/POLICY ROBLEM

ASK

A 6 Cycle

ASSESS

ANALYZE

APPLY

ACQUIRE

APPRAISE
LMBP
Formulate an Answerable Question
the PICO system

• **Population** (Patient Description)
• **Indicator** (Practice)
• **Comparator** (Control practice)
• **Outcome** (Health-related, Economic)
Example Review Question: For hospitalized patients, what practices are effective for communicating laboratory critical value results in a timely and accurate fashion to the licensed caregiver who can act on them?
LMBP Analytic Framework

Quality Issue/Problem
- Clear statement of issues and problems related to the topic

Preventability/Improvement
- Listing of specific measures that may be targets for improvement.
- Ideally quantitative measures

Intermediate Outcomes
- Listing of surrogate outcomes associated with patient/health outcomes

Interventions/Practices
- Listing of practices, strategies & interventions that may be implemented.

Health Outcomes
- Outcomes that impact directly on patients

Harms (Systemic & Systematic)
- Potential risk of practices

LMBP Analytic Framework

[Diagram showing the flow between the components]
ACQUIRE: Identify sources and collect potentially relevant studies

ACQUIRE → ASSESS → APPLY → ANALYZE → ASK → Identified Topic → ACQUIRE

A 6 Cycle
ACQUIRE: Identify sources for evidence to address the specific question

- Reference Databases (e.g. Medline AND EMBASE, Cochrane)
- Hand-searching key journals
- Meeting Abstracts or conference proceedings
- Special Databases (grey literature)
- Reference lists and citation searching
- Commentaries (may lead to other sources)
- Contacting Experts (unpublished studies)
- The Internet
- Unpublished studies
ACQUIRE: Identify sources for evidence to address the specific question

- Reference Databases (e.g. Medline AND EMBASE, Cochrane)
- Hand-searching key journals
- Meeting Abstracts or conference proceedings
- Special Databases (grey literature)
- Reference lists and citation searching
- Commentaries (may lead to other sources)
- Contacting Experts (unpublished studies)
- The Internet
- **Unpublished reports and studies**
Each topic area Expert Panel have 7-9 panelists:

- 2-3 Work Group members with relevant topic area content expertise
- 2-3 topic area content experts who are not Work Group members
- 1 specialist in evidence review methods
- 2 specialists in laboratory management, including administrative and laboratorian specialties
Appraise: Create an evidence base by applying screening and evaluation/rating criteria

APPRAISE

- **ASSESS**
- **APPLY**
- **ANALYZE**
- **ASK**
- **AQUIRE**

A 6 Cycle
LMBP APPRAISE STEP (A3)
Process Summary

• **Initial screen** of search results (exclusion criteria)
• **Abstract, standardize and summarize** studies meeting inclusion criteria
• **Evaluate and rate/score**
 – Study quality
 – Effect size
• **Synthesize** into a practice body of evidence
LMBP APPRAISE STEP (A3)
Overview

• **Purpose**
 Evaluate the search results (published and unpublished) from the ACQUIRE (A2) step to identify and qualify studies for potential inclusion as evidence of practice effectiveness that address the focused review question(s) framed in the ASK (A1) step.

• **Process**
 Initial screening of individual published and unpublished search results against LMBP study inclusion and exclusion criteria to full abstraction and evaluation of candidate studies, including rating of study quality and effect size, for a specific practice’s evidence base using a minimum of two reviewers.

• **Results**
 A practice-specific aggregate body of evidence (evidence base) of effectiveness studies for use in the ANALYZE (A4) step, including evaluation of effect size and consistency and meta-analysis using individual study results.
Report search strategy and account for and the sources

- Inclusion / exclusion criteria for the topic

540 Total References
 - 532 PubMed, CLSI, Cochrane
 - 8 hand-search

506 Excluded
 - 304 review title or abstract
 - 202 did not meet requirements

33 Full-Text Review
 - 10 PubMed, CLSI, Cochrane
 - 8 hand-search
 - 16 background articles

28 Excluded
 - didn’t meet inclusion criteria

Results
 - 5 published studies
 - 4 unpublished assessments

Results by Practice
 - 5 Call Center
 - 4 Automated Notification
Evidence Summary Table

<table>
<thead>
<tr>
<th>Quality Domains</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bibliographic Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Author(s)</td>
</tr>
<tr>
<td>- Yr Published/Submitted</td>
</tr>
<tr>
<td>- Publication</td>
</tr>
<tr>
<td>- Author Affiliations</td>
</tr>
<tr>
<td>- Funding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality Domains Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

- Two Abstractors independently review evidence
- Results of abstractions are compared
- Meeting to resolve Abstractor discrepancies
Step 1 – Study Quality Rating

<table>
<thead>
<tr>
<th>Practice A</th>
<th>Study Characteristics (3 pts)</th>
<th>Practice Characteristics (2 pts)</th>
<th>Outcome Measures (2 pts)</th>
<th>Results (3 Pts)</th>
<th>Overall Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Study 2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Good**: 8-10 pts
- **Fair**: 5-7 pts
- **Poor**: ≤ 4 pts
Combine Appraise Steps 1 & 2

1 – Study Quality Rating

<table>
<thead>
<tr>
<th>Practice A</th>
<th>Study Characteristics (3 pts)</th>
<th>Practice Characteristics (2 pts)</th>
<th>Outcome Measures (2 pts)</th>
<th>Results (3 Pts)</th>
<th>Overall Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Good: 8-10 pts
- Fair: 5-7 pts
- Poor ≤ 4 pts

2 – Study Effect Size Rating

<table>
<thead>
<tr>
<th>Study Ratings</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>Substantial</td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
</tr>
</tbody>
</table>

- Substantial
- Moderate
- Minimal/None

Individual Study Ratings

<table>
<thead>
<tr>
<th>Study Ratings</th>
<th>Study Quality Rating</th>
<th>Study Effect Size Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Study 2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standardize, Summarize and Rate Studies

Practices reducing patient specimen identification errors

<table>
<thead>
<tr>
<th>Practice: Bar-coding Systems</th>
<th>Study Quality Rating</th>
<th>Effect Size Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evidence</td>
<td>Study</td>
</tr>
<tr>
<td>Bologna 2002</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hayden et al. 2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Sandler et al. 2005</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Turner et al. 2003</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zarbo et al. 2009</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Unpub A 2009</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>U of MN 2009</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>U of WA 2009</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LBJ 2009</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Study characteristics:
- Evidence (Maximum = 3)
- Practice description (Maximum = 2)
- Outcome Measure (Maximum = 2)
- Results of Study (Maximum = 3)

Good: 8 -10 points
Fair: 5-7 points
Poor: <=4 points
LMBP – ANALYZE (A-4): Body of Evidence
Study Quality Rating

<table>
<thead>
<tr>
<th>Practice A</th>
<th>Study Characteristics (3 pts)</th>
<th>Practice Characteristics (2 pts)</th>
<th>Outcome Measures (2 pts)</th>
<th>Results (8 pts)</th>
<th>Overall Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Substantial**
- **Moderate**
- **Minimal/None**

Study Effect Size Rating

<table>
<thead>
<tr>
<th>Study Ratings</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Study n</td>
<td></td>
</tr>
</tbody>
</table>

- **Substantial**
- **Moderate**
- **Minimal/None**

Individual Study Ratings

- **Good**: 8-10 pts
- **Fair**: 5-7 pts
- **Poor**: ≤ 4 pts

Overall Evidence Rating

<table>
<thead>
<tr>
<th>Individual Study Quality</th>
<th>Individual Effect Size</th>
<th>Consistency (Yes / No)</th>
<th>Overall Strength Rating</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td># Good:</td>
<td>Substantial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good:</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good:</td>
<td>Minimal / None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good:</td>
<td>Adverse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4 5
LMBP Expert Panels

- Reach consensus on topic area evidence review quality and effect size rating categories
- Apply and provide feedback on evaluation methods to produce ratings for individual study quality and effect size
- Evaluate individual practices’ overall strength of evidence, effect size consistency (i.e., direction and magnitude)
- Develop final draft practice evidence summaries and draft recommendations to be presented to the LMBP Workgroup
Meta Analysis

Evaluate Consistency & Standardized Effect Size

<table>
<thead>
<tr>
<th>Study name</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1 (2001)</td>
<td>2.32</td>
<td>1.11</td>
<td>4.87</td>
</tr>
<tr>
<td>Study 2 (2000)</td>
<td>1.94</td>
<td>0.79</td>
<td>4.78</td>
</tr>
<tr>
<td>Study 3 (2004)</td>
<td>1.78</td>
<td>0.93</td>
<td>3.41</td>
</tr>
<tr>
<td>Study 4 (2005)</td>
<td>0.98</td>
<td>0.39</td>
<td>2.47</td>
</tr>
<tr>
<td>Study 5 (2002)</td>
<td>0.94</td>
<td>0.34</td>
<td>2.62</td>
</tr>
<tr>
<td>Study 6 (2003)</td>
<td>0.32</td>
<td>0.12</td>
<td>0.85</td>
</tr>
<tr>
<td>Summary Effect Estimate</td>
<td>1.22</td>
<td>0.70</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Odds ratio and 95% CI

- **Test more effective**, $p < .05$
- **Test less effective**, $p < .05$

Favors Standard Practice

Favors Test Practice
Consistency (Yes/No)

Overall Evidence Rating

<table>
<thead>
<tr>
<th>Individual Study Quality</th>
<th>Individual Effect Size</th>
<th>Consistency (Yes / No)</th>
<th>Overall Strength Rating</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td># Good:</td>
<td>Substantial</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td># Good:</td>
<td>Moderate</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td># Fair:</td>
<td></td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td># Good:</td>
<td>Minimal / None</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td># Fair:</td>
<td>Adverse</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Study name

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Std diff in means and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std diff</td>
<td>Standard error</td>
</tr>
<tr>
<td>Study A (2007)</td>
<td>0.85</td>
<td>0.11</td>
</tr>
<tr>
<td>Study E (2009)</td>
<td>0.64</td>
<td>0.03</td>
</tr>
<tr>
<td>Study B (2007)</td>
<td>0.47</td>
<td>0.06</td>
</tr>
<tr>
<td>Study C (2008)</td>
<td>0.34</td>
<td>0.06</td>
</tr>
<tr>
<td>Study F (2010)</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Study D (2009)</td>
<td>-0.28</td>
<td>0.06</td>
</tr>
<tr>
<td>Summary effect estimate</td>
<td>0.34</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Summary effect estimate

- Summary effect estimate: 0.34
- Std diff in means: 0.34
- Standard error: 0.16
- Lower limit: 0.03
- Upper limit: 0.66

Statistics for each study

- Std diff in means and 95% CI:
 - Favors Standard Practice: -1.00 to -0.50
 - Favors Test Practice: 0.50 to 1.00
Overall Strength of Evidence

<table>
<thead>
<tr>
<th>Individual Study Quality</th>
<th>Individual Effect Size</th>
<th>Consistency (Yes / No)</th>
<th>Overall Strength Rating</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td># Good: 1 # Fair:</td>
<td>Substantial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good: 2 # Fair:</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good: 3 # Fair:</td>
<td>Minimal / None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Good: 4 # Fair:</td>
<td>Adverse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall Evidence Rating

- **Strength Ratings**
 - High
 - Moderate
 - Suggestive (Low)
 - Insufficient (Very Low)

<table>
<thead>
<tr>
<th>Strength Ratings</th>
<th>Combined Evidence Minimum Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Studies*</td>
</tr>
<tr>
<td>High</td>
<td>≥ 3</td>
</tr>
<tr>
<td>Moderate</td>
<td>≥ 2 or ≥ 3</td>
</tr>
<tr>
<td>Suggestive (Low)</td>
<td>≥ 1 or ≥ 2</td>
</tr>
<tr>
<td></td>
<td>≥ 3</td>
</tr>
<tr>
<td>Insufficient (Very Low)</td>
<td>All others</td>
</tr>
<tr>
<td>Recommendation Categories</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Recommend (‘Best Practice’)</td>
<td>Consistent and high or moderate overall evidence of effectiveness strength rating of desirable effects</td>
</tr>
<tr>
<td>No recommendation for or against</td>
<td>Insufficient evidence to determine effectiveness</td>
</tr>
<tr>
<td>Recommend against</td>
<td>Consistent and high or moderate overall evidence of effectiveness strength rating adverse effects</td>
</tr>
</tbody>
</table>
LMBP Evidence-based Recommendation

Workgroup

Recommendation Categories
• Recommend
• No recommendation for or against
• Recommend against

Additional Considerations
• Feasibility of implementation
• Economic evaluation
• Applicability to specific care settings
• Associated harms and benefits
LMBP Systematic Review Methods A-6 Cycle

QUALITY GAP/POLICY PROBLEM

ASSESS

APPLY

ANALYZE

APPRAISE

ACQUIRE

A 6 Cycle

ASK
Meeting Laboratory Practitioners’ Needs

COMMON SCENARIOS THAT REQUIRE EVIDENCE-BASED DECISION MAKING
An Administrative Director wants to request new technology

- Patient specimen identification errors continue to be a major problem despite the implementation of new identification guidelines. The medical center is considering a bar-coding system to reduce patient specimen identification errors.
- The Laboratory Administrative Director is requested to evaluate the benefits of this new technology.

Question: How does the Administrative Director determine if this practice (bar coding systems) has been effective in other settings?
An Emergency Department physician wants the laboratory to improve MRSA testing turn-around-time

• Patient admissions with potential infectious conditions are on the rise, and the bed management coordinator needs information in a timelier manner to make room assignments. These patients remain in the ED for an extended period of time until the laboratory results are reported. This creates a longer waiting time for new patients arriving in the emergency department.

• The Microbiology Supervisor is requested to evaluate new tests that may result in an improvement in TAT.

Question: How does the Microbiology Supervisor evaluate other tests on the market that will result in effective patient admissions?
A Diabetes Center Manager wants to change the mode of delivery of care

• The clinicians at a Diabetes Center want to improve patient compliance. They have read that HbA1c is available in a point of care testing (POCT) device and can improve the management of the patient’s condition by providing test results at the time of patient consultation and thus improve patient outcomes.

• The Manager is asked to contact the hospital laboratory’s Chemistry Supervisor to help evaluate the effectiveness of POCT device in other settings and its potential implementation.

Question: How does the Chemistry Supervisor evaluate the evidence on the use of POCT for HbA1c.
Applying an Evidence-Based Approach to Laboratory Medicine

Using evidence to evaluate practice effectiveness can help laboratory professionals and healthcare stakeholders to:

• Determine what practices are effective, for whom and in what settings(s)
• Inform clinical decision making
• Improve patient care and outcomes
• Promote transparency and accountability
How are Topics Identified?
Two Groups of Advisors

Let’s keep the big picture in mind
Workgroup

“We’re getting down to nuts and Bolts”
Expert Panel
How Are Topics Identified? Additional Input:

- Personnel from LMBP Team (CDC/Battelle)
- Professional Organizations
- Accrediting Agencies
- LMBP Website
- Communications with Laboratory Professionals
Major Criteria for Topic Selection

Consistent with one or more of IOM Aims

- Patient-centered
- Safe
- Effective
- Efficient
- Equitable
- Timely

Topic represents a practice in the pre- or post-analytic stage of testing process
Topics Completed in Methods Validation Phases

- Reporting critical values
- Patient specimen identification
- Reducing blood culture contamination
Practices to Reduce Blood Culture Contamination

Example of LMBP A-6 Process Applied
Clinical Utility

- False positive blood cultures lead to errors in clinical interpretation with subsequent consequences:
 - Administration of unnecessary antimicrobial therapy.
 - Performance of additional cultures and other diagnostic tests.
 - Unnecessary hospitalization or extended length of stay (LOS).
 - Increased health care costs.
 - Undue burden on patient.
What interventions/practices are effective at reducing contamination of blood cultures drawn from hospitalized patients?
ASK - Evidence Review Question: What interventions/practices are effective at reducing contamination of blood cultures drawn from hospitalized patients?

Pre analytic sources of blood culture contamination

- Pre-collection practices
 - Aseptic technique
 - Antiseptic agent
 - Gloves
 - Proper drying time
- Collection site

Interventions

- Venipuncture vs. Intravenous catheters
- Phlebotomy Teams vs. non-phlebotomy staff
- Prep kit vs. no prep kit

Preventability/ Improvement

- BCC rate range 1.1%-5.2%
- Standards of the American Society for Microbiology (rate not to exceed 3%)

Intermediate Outcomes

- Contamination rate
- False-positive cultures
- Re-collection
- Additional testing/follow-up associated with reevaluation
- Incorrect/delayed diagnosis

Care-Related Outcomes

- Unnecessary antibiotic therapy
- Unnecessary hospital admissions
- Increased hospital length of stay
- Associated Incremental costs of care

Health-Related Outcomes

- Hospital Acquired Infection
- Other additional tests
- Mortality

Harms

- Increased risk of occupational needle stick injury; 1-vs. 2-needle
- Patient infection due to collection site/technique.
ACQUIRE: Search Results

Published Literature

Initial Search Results
1677 references

Title/abstract did not meet inclusion criteria

1647 Excluded

1647 Excluded

30 Full Text Articles

20 Excluded

20 Excluded

Did not meet criteria

9 found by hand searching, 5 excluded

14 Full Text Articles

Unpublished Assessments

Venipuncture
0 submitted

Phlebotomy Teams
5 submitted
2 included

Prepackaged prep kits
2 submitted
0 included

14 Published Studies
2 Unpublished Studies

Results by Practice:
7 Venipuncture (vs. catheter)
6 Phlebotomy team
4 Prep Kits
Venipuncture (versus Intravenous Catheter)
Meta-Analysis

<table>
<thead>
<tr>
<th>Study name</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>McBryde 2005</td>
<td>5.60</td>
<td>3.61</td>
<td>8.69</td>
</tr>
<tr>
<td>Norberg 2003</td>
<td>3.46</td>
<td>2.55</td>
<td>4.69</td>
</tr>
<tr>
<td>Martinez 2002</td>
<td>2.57</td>
<td>1.12</td>
<td>5.89</td>
</tr>
<tr>
<td>Everts 2001</td>
<td>2.12</td>
<td>1.32</td>
<td>3.40</td>
</tr>
<tr>
<td>DesJardin 1999</td>
<td>1.88</td>
<td>0.95</td>
<td>3.74</td>
</tr>
<tr>
<td>Beutz 2003</td>
<td>1.88</td>
<td>0.88</td>
<td>3.99</td>
</tr>
<tr>
<td>Ramsook 2000</td>
<td>1.70</td>
<td>1.01</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>2.63</td>
<td>1.85</td>
<td>3.72</td>
</tr>
</tbody>
</table>

◆ = Venipuncture summary effect size
Venipuncture is associated with lower blood culture contamination rates
Odds Ratio = 2.63 (95% CI = 1.85 – 3.72)
Venipuncture is 2.63 times as successful as the comparison practice (intravenous catheter)
<table>
<thead>
<tr>
<th>Study name</th>
<th>Subgroup within study</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Weinbaum 1997#</td>
<td>Combined</td>
<td>5.78</td>
</tr>
<tr>
<td>Sheppard 2008</td>
<td>N/A</td>
<td>4.83</td>
</tr>
<tr>
<td>Geisinger 2009</td>
<td>N/A</td>
<td>2.52</td>
</tr>
<tr>
<td>Gander 2009</td>
<td>N/A</td>
<td>2.51</td>
</tr>
<tr>
<td>Providence 2009</td>
<td>Combined</td>
<td>2.44</td>
</tr>
<tr>
<td>Surdulescu 1998*</td>
<td>N/A</td>
<td>2.09</td>
</tr>
</tbody>
</table>

Phlebotomy teams are associated with lower blood culture contamination rates.
Odds Ratio = 2.53 (95% CI = 2.28 – 2.81)
Phlebotomy team is 2.53 times as successful as the comparison practice (without phlebotomy team)
Prepackaged Prep Kits Meta-Analysis

<table>
<thead>
<tr>
<th>Study name</th>
<th>Subgroup within study</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Odds</td>
</tr>
<tr>
<td>Trautner 2002</td>
<td>Prep v Usual prx</td>
<td>3.68</td>
</tr>
<tr>
<td>Weinbaum 1997</td>
<td>Combined</td>
<td>3.51</td>
</tr>
<tr>
<td>McLellan 2008</td>
<td>Combined</td>
<td>1.03</td>
</tr>
<tr>
<td>Wilson 2000</td>
<td>Combined</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.15</td>
</tr>
</tbody>
</table>

◆ = Prep kits summary effect size

Prepackaged prep kits are **not** associated with lower blood culture contamination rates.

Odds Ratio = 1.15 (95% CI = 1.02 – 1.30)

Prep kits are about as successful as the comparison practice (without prep kits)

Boxes proportional to weights

<---Favours Usual Prx Favours Prep Kit---
Using the LMBP systematic review methods to evaluate the overall strength of evidence of effectiveness for reducing blood culture contamination rates for each practice, the LMBP Blood Culture Contamination Expert Panel and Workgroup recommended the following:

- **Best Practice**: Use of *venipuncture* as the preferred technique for sample collection in the clinical setting, when this option exits
- **Best Practice**: Use of phlebotomy *teams* to collect blood culture specimens
- No recommendation for or against the use of *prepackaged prep kits* (as a best practice.)
Future plans for blood culture topic

To continue to disseminate evidence-based practice recommendations to reduce blood culture contamination and improve patient and public health outcomes:

• Application of these practices should continue to be assessed so that these LMBP practice evidence reviews and recommendations can be updated with new study results.

• New evidence reviews and recommendations related to additional practices are needed, and requires acquisition of evidence not currently available.
LMBP Initiative is Fighting These Culprits For You
Additional LMBP Pilot Project Findings

• New LMBP methods can be used for systematically reviewing and evaluating quality improvement practices
• Quality improvement projects and efforts routinely conducted by laboratories generate relevant data for inclusion in systematic evidence reviews
• Data from quality improvement projects can be used as evidence of practice effectiveness
• Many quality improvement projects fail to meet minimum research standards for good study design
LMBP Educational Objective

• Develop and implement an education / curriculum strategy that familiarizes laboratory professionals with methods for improving the quality of unpublished process improvement / quality assurance studies so that data from these studies are consistently available to inform best practice recommendations.
LMBP Educational Activity

Development of a four-part, self-guided tutorial to:

• Increase awareness about new LMBP evidence-based methodology for conducting systematic evidence reviews, and
• Increase the competence in application of evidence-based principles to quality improvement (QI) projects or research
• Online Module 1 anticipated 1st quarter of 2011 at www.futurelababmedicine.org
Solving a clinical problem using an evidence-based approach is a cyclical process that begins with generating an answerable question and ends with assessing the process.

Core Skills

• Designing outcomes projects
• Formulating answerable questions
• Searching the literature
• Critical appraisal of data
• Interpret analysis of data / meta-analysis
• Writing papers
Sustainability
Gerald O'Hara (Thomas Mitchell): On Sustainability

Do you mean to tell me, Katie Scarlett O'Hara, that Tara, that land doesn't mean anything to you? Why, land is the only thing in the world worth workin' for, worth fightin' for, worth dyin' for, because it's the only thing that lasts.

LMBP systematic reviews get as close the truth as possible. Worth workin’ for, worth advocatin’ because it’s the only thing that lasts.
Sustainability

• Enlisting partners to support dissemination and uptake of best practices
 • Topics in the pipeline
 • Suggestions for panelists and feedback on topics: ASM
 • Formal recognition of the need for the application of systematic review methods and the use of evidence-based best practices in LM
LMBP Partner Organizations

- American Society for Clinical Pathology
- The Joint Commission
- Clinical Laboratory Management Association
- Agency for Healthcare Research and Quality - Innovations Exchange
- American Society for Microbiology
- American Society for Clinical Laboratory Sciences
- Consortium on Office Laboratory Accreditation
- College of American Pathologists
- AACC - Improving healthcare through laboratory medicine
- National Academy of Clinical Biochemistry - The Academy of AACC
- Laboratory Medicine - Best Practices
Sustainability

• Enlisting partners to support dissemination and uptake of best practices

• **Topics in the pipeline**
 - Suggestions for panelists and feedback on topics: ASM
 - Formal recognition of the need for the application of systematic review methods and the use of evidence-based best practices in LM
Proposed new review topics

• **Hemolysis**: What practices are effective at reducing rejection by the clinical laboratory of samples drawn from in-patient and ED patients due to hemolysis as a sample quality issue?

• **Cardiac Biomarker Testing**: Will the adoption of serial point of care testing of cardiac troponin effectively increase accurate myocardial infarction diagnosis, reduce time to treatment, increase appropriate patient disposition and improve patient outcome among ED patients presenting with symptoms suggestive of Acute Coronary Syndrome?

• **Rapid Identification of Bloodstream Infections**: What practices are effective at increasing timeliness of providing targeted therapy for in-patients with diagnosed bloodstream infections to improve clinical outcomes (LOS, morbidity, mortality)?
Sustainability

- Enlisting partners to support dissemination and uptake of best practices
- Topics in the pipeline
- Suggestions for panelists and feedback on topics: ASM
- Formal recognition of the need for the application of systematic review methods and the use of evidence-based best practices in LM
Working Group Roster

Paul Epner
Principal
Paul Epner LLC
1501 Hinman Ave, #7B
Evanston, IL 60201
tel: 847-568-2810
PEpner@ChicagoBooth.edu

Vickie Baselski, Ph.D.
349 Riverbluff Place
Memphis, TN 38103
vbaselski@uthsc.edu

Robert H. Christenson, Ph.D.
Director, Clinical Chemistry
Laboratories & Professor of Pathology
and Medical and Research Technology
University of Maryland Medical Center
22 South Greene Room N2W44 UMMS
Baltimore, MD 21201-1544
tel: 410 328-8672
rchristenson@umms.edu

Nancy Cornish, M.D.
The Pathology Center
PO Box 24424
Omaha, NE
tel: 402-354-4554
cornish2@cox.net

Colleen Kraft, M.D.
Emory University
1470 Crescent Walk
Decatur, GA
cskendr@emory.edu

Ed Liebow, Ph.D.
Health Research Leader
& LMBP Project Manager
Battelle Centers for
Public Health Research and Evaluation
1100 Dexter Avenue North, Suite 400
Seattle, WA 98109
tel: 206-528-3155
LiebowE@Battelle.org

Michael Saubolle, Ph.D.
Pathology Department
1111 E McDowell Road
Phoenix, AZ 85006
tel: 602-839-3485
mike.saubolle@bannerhealth.com

Robert Sautter, Ph.D.
Carolinias Pathology Group
P.O. Box 34455
Charlotte, NC 28234-1039
tel: 704-355-3476
robert.sautter@caroliniashealthcare.org

Susan Snyder, Ph.D.
Economist & LMBP Program Officer
CDC
1600 Clifton Road MS-G23
Atlanta, GA 30333
tel: 404-498-2245
ssnyder@cdc.gov

Alice Weissfeld, Ph.D.
Microbiology Specialists Inc
8911 Interchange Dr
Houston, TX 77054
tel: 713-663-6888
alice@microbiologyspecialists.com

Donna Wolk, Ph.D.
University of Arizona
Dept of Pathology
1501 N Campbell Ave
PO Box 254049
Tucson, AZ
tel: 507-284-2511
dwolk@email.arizona.edu

Peggy McNult, Staff
ASM
1752 N St, NW
Washington, DC 20036
tel: 202-942-9225
pmcnult@asmusa.org
Review Questions from ASM Workshop

• What practices are effective at increasing timeliness of providing targeted therapy for inpatients with diagnosed bloodstream infections (*positive blood cultures*)? to improve clinical outcomes (LOS, morbidity, mortality)?

• What practices following specimen collection are effective at reducing false positive diagnoses of Urinary Tract Infections (UTI)?
Sustainability

• Enlisting partners to support dissemination and uptake of best practices
• Topics in the pipeline
• Suggestions for panelists and feedback on topics: ASM

• Formal recognition by CLIAC of need for a sustainable mechanism of applying systematic review methods and the use of evidence-based best practices in laboratory medicine.
Questions for the Committee

• Does the Committee agree that the LMBP approach to selecting and qualifying topics for evidence reviews is appropriate for identifying important evidence-based best practices in Lab Medicine?

• Would the Committee please comment on the list of new topics proposed for systematic reviews?

• Would the Committee please comment on other key topic areas, focusing on pre- and post-analytic stages of the total testing process, that it would like to see the LMBP Initiative add to its future calendar?

• Would the Committee consider formally recognizing the value of continuing the LMBP Initiative in a sustained fashion?
Thank You
rchristenson@umm.edu
diana.mass@asu.edu

For more information: www.futurelabmedicine.org