Implementation of NCCLS Antimicrobial Susceptibility Testing Standards

Fred C. Tenover, Ph.D. A.B.M.M.
Associate Director for Laboratory Science
Division of Healthcare Quality Promotion
Centers for Disease Control and Prevention
Role of AST in Clinical Microbiology

- Data used to manage therapy for infections in individual patients
- Guidance for empiric therapy
- Basis for infection control activities
- Used in local, regional, and national databases to evaluate trends in emerging resistance
NCCLS AST Standards Provide:

- Methods for antimicrobial susceptibility testing (disk diffusion, MIC, screen tests)
- Interpretive criteria for results (breakpoints)
  - Susceptible, Intermediate, Resistant
- Quality control, quality assessment
- Recommendations for reporting results
  - Report first line drugs before more expensive and potentially more toxic agents
NCCLS AST Documents

- M2 – Disk diffusion document
- M7- MIC document
- M11- Anaerobe document
- M23 – Development of in vitro test criteria and quality control ranges
- M39 – Antibiogram document
- M100- Tables (updated annually)
College of American Pathologists Requirements

- Lab should have up-to-date NCCLS standards
- Methods documents (M2 and M7) updated every three years
- M100 Tables updated every year
  - Breakpoints for new drugs
  - Revised breakpoints for older drugs
  - New screening tests
  - Clarifications of testing methods
Establishing Breakpoints

- **Population distributions**
  - Surveys of large numbers of susceptible and resistant organisms

- **Pharmacokinetics and pharmacodynamics**
  - Achievable blood and CSF levels, clearance of drugs, toxicities

- **Clinical data**
  - Validation that proposed MIC and disk diffusion breakpoints have predictive value

- **Conflicts among these three are common**
Ceftriaxone MIC Distribution for Pneumococci

Ceftriaxone versus *Streptococcus pneumoniae* (n = 1601), 1997-98

Note location of susceptible breakpoint; data shows efficacy for meningitis good penetration in CSF
Cefaclor MIC Distribution for Pneumococci

Cefaclor versus *Streptococcus pneumoniae*  
(n = 1601), 1997-98

Very different PK/PDs and clinical efficacy data account for differences
Our AST Methods Are Far from Complete

- Defined methods and defined breakpoints
  - *E. coli* and ampicillin
- Defined methods and breakpoints, but often requiring additional testing
  - *S. aureus*; oxacillin, vancomycin
  - *Klebsiella pneumoniae*; extended-spectrum beta-lactamases
The Problems

- Defined methods, but lacking quality control ranges or defined breakpoints
  - *Enterococcus faecium* and daptomycin

- Defined methods, but no breakpoints and no quality control ranges
  - *Neisseria meningitidis* and penicillin

- No methods, no breakpoints, no quality control
  - *Corynebacterium* species
NCCLS Responses

- **Enterococcus faecium** and daptomycin
  - New breakpoints to be published in Jan 2005

- **Neisseria meningitidis** and penicillin
  - New Table devoted totally to *N. meningitidis* in Jan 2005 (10 drugs)

- No methods, no breakpoints, no quality control for *Corynebacterium* species
  - New NCCLS document in development on testing of fastidious and infrequently isolated organisms (Jan 2006)
Sources of Information Regarding What Antimicrobial Agents to Test

- NCCLS guidelines (M2/M7 Tables 1 and 2)
- FDA product inserts (www.fda.gov)
- The Sanford Guide to Antimicrobial Therapy
- Clinical practice guidelines from professional societies (IDSA, ATS, etc.)
- Physician’s desk reference
- Peer-reviewed literature
- Medical Letter
An Example Showing How NCCLS Could Improve: Testing *Gemella* species

- Case of native valve infective endocarditis caused by *Gemella haemolysans*
- Physician wants assurance that penicillin therapy plus an aminoglycoside is best option
- *Gemella* is not in NCCLS guidelines
- What approach would you take?
Gemella endocarditis: Questions to Ask

- Is it clinically relevant to patient management?
- Are their NCCLS guidelines for similar types of organisms that might apply?
- Can I adequately control the medium and test conditions?
- Is there sufficient information available to interpret the results?
Addressing the Questions

- Answers will affect therapy
- Could use NCCLS non-pneumococcal streptococcus guidelines; some strains require blood, so use MH broth + 5% LH blood (document says to perform MICs if necessary)
- *S. pneumoniae* ATCC 49619 used for Quality control
- No interpretive criteria available
What To Do?

- Report MICs without interpretations
  - No MICs were obviously in the “resistant” or “susceptible”
- Add comment that no interpretive criteria are available for this organism
- Suggest Infectious Disease or Pharmacy Consultation as described in document M100
- This process could be better explained in NCCLS documents
“Routine testing of urine isolates of *Staphylococcus saprophyticus* is not advised because infections respond to concentrations achieved in urine of antimicrobial agents commonly used to treat acute, uncomplicated urinary tract infections (e.g., nitrofurantoin, trimethoprim/sulfamethoxazole, or a fluoroquinolone).”

NCCLS Document M100, 2004
Are NCCLS AST Standards Responsive to Customers’ Needs?

- Annual M100 supplements includes a summary of major changes (additions and deletions)
- Each M100 document has section of “Comments and Responses”.
- Provides to questions raised by users regarding test methods or breakpoints
- Documents are conservative. Proposed changes undergo considerable study
Who submits data for consideration by NCCLS?

- Pharmaceutical industry
  - Proposed breakpoints for new drugs
  - Revisions to existing breakpoints
- Government
  - Public health warnings, ESBLs, VRSA screening tests
- Academia
  - PK/PD data; Monte Carlo simulations
- Individual microbiologists
The goal of AST is to generate accurate and meaningful results.
NCCLS standards provide a structure for testing and reporting.
Feedback is continuous to NCCLS headquarters.
Questions often redirected to AST Subcommittee members; answers published annually.
The system appears to work slowly but well.