June 5, 2002

Participant
Centers for Disease Control and Prevention (CDC)
Mycobacterium tuberculosis Nucleic Acid Amplification Testing
Performance Evaluation Program

Subject: Analyses of Participant Laboratory Results for the January 2002 Shipment

Dear Participant:

Enclosed are analyses of laboratory test results reported to the Centers for Disease Control and Prevention (CDC) by participant laboratories for the January 2002 shipment of samples for the CDC M. tuberculosis Nucleic Acid Amplification (M.tb NAA) Testing Performance Evaluation Program. Participant laboratories received five individual samples. Testing results were received from 80 of 84 (95%) enrolled laboratories that received this shipment.

The enclosed aggregate report is prepared in a format that will allow laboratories to compare their results with those obtained by other participants for the same sample using the same M.tb NAA test method.

We encourage you to circulate this report to all personnel involved with M.tb NAA testing, interpreting, or reporting. If you have any comments or suggestions on the format selected for the results, or questions regarding this report, you may call Laurina Williams at (770) 488-8130.

Sincerely yours,

Laurina O. Williams, Ph.D.
Project Officer
Division of Laboratory Systems
Public Health Practice Program Office

Enclosures
Analyses of the January 28, 2002 Performance Evaluation Results for *M. tuberculosis* Nucleic Acid Amplification Testing Reported to the Centers for Disease Control and Prevention

This report is an analysis of laboratory test results reported to the Centers for Disease Control and Prevention (CDC) by participant laboratories for the samples containing *M. tuberculosis* or other mycobacteria shipped in January 2002. Testing results were received from 80 of 84 (95%) laboratories participating in this shipment. The *M.tb* NAA Performance Evaluation Program provides laboratories with assessment and evaluation of test methods and results. To maintain participant confidentiality, the CDC analyzes only participant data from which all laboratory identifiers have been removed by the contractor, Wisconsin State Laboratory of Hygiene.

Participant laboratories received five individual samples. Participants were requested to test the samples without the decontamination and concentration routinely performed on respiratory specimens prior to *M.tb* NAA testing. The specimen decontamination/concentration preparation steps for *M.tb* NAA testing were eliminated to allow this program to specifically assess *M.tb* NAA testing procedures (2,6).

Experiments were performed to document sample viability and test reactivity. Due to specific concerns of cross-contamination between *M.tb* NAA-positive and *M.tb* NAA-negative test samples, the negative samples were produced in a separate area. Additionally, 10% of both positive and negative samples were randomly selected and tested by the contractor to validate *M.tb* NAA test results. The test samples were also tested by five reference laboratories before shipping.

Figure 1 shows the laboratory classification represented by 76 participants. Participants consisted of 33 hospitals, 29 health departments, 10 independents, and 4 other types of laboratories.

Figure 2 provides the distribution of the volume of specimens tested with *M.tb* NAA by participating laboratories during the 3 months prior to reporting results.

Figure 3 provides a breakdown of the *M.tb* NAA test procedures reported by the participating laboratories. Participants were asked to check all of the test methods used. Most of the participants (4/6) reporting the use of In-house and “Other” *M.tb* NAA test procedures used methods based on polymerase chain reaction (PCR). Although the CDC does not recommend the use of non-FDA cleared *M.tb* NAA test procedures (3,5), laboratories using In-house methods are encouraged to participate in this evaluation program to assess performance (2).

Figure 4 lists the biosafety levels reported by participant laboratories. All laboratories should routinely consult the CDC/NIH manual, *Biosafety in Microbiological and Biomedical Laboratories* (4th edition), for recommendations and for determining their correct biosafety level.
Participants were also asked to provide information on specific quality control practices related to the prevention of cross-contamination and subsequent false positives with NAA testing. Figure 5 provides the participant laboratory responses to a question about whether the biological safety cabinet (BSC) used for M.tb NAA testing is used for other purposes. One concern is that 19% (15/78) of participant laboratories indicated that they process M.tb specimens in the same BSC that is used for M.tb NAA testing. Among the 32% (25/78) of participants that indicated “Other” uses for the M.tb NAA testing BSC, 11 performed M.tb culture work (biochemicals, drug susceptibility testing, Accuprobe identification, etc.), 10 performed mycology, and 6 performed other microbiology or clinical specimen work. Four laboratories reported using the same BSC for bioterrorism-related work and other procedures. Laboratories should be aware of recommendations (4) to perform specimen processing and NAA testing in separate work areas with separate equipment.

Figure 6 provides participant responses to a question on the use of uni-directional workflow for M.tb NAA testing. In addition to recommendations (4) that emphasize considerations of laboratory design for NAA testing, both manufacturers (Roche Amplicor® and Gen-Probe® MTD) recommend the use of unidirectional workflow. It is concerning that 11% (9/79) responding laboratories reported that unidirectional workflow is not being used.

Separate figures and tables are provided to show either the qualitative or quantitative results reported for each sample by the participant laboratories. Quantitative results for the In-house methods could not be presented in a consistent format since participants used a variety of detection systems and test interpretation criteria. The Roche Amplicor® test has interpretive criteria for quantitative results that reflect some probability that the sample is positive but are below the recommended threshold for positivity. The result form and this report use the term "equivocal" for Roche Amplicor®, to reflect the manufacturer’s recommendation for reporting indeterminate quantitative test results.

Figure 7 provides a summary of the participant qualitative results reported for all five samples by test method. The aggregate participant qualitative results are indicated for the 3 M.tb-positive and 2 M.tb-negative samples. The combined analytical sensitivity of all methods was 90.4% (217/240) for the 3 M.tb-positive samples: 99.4% (170/171) sensitivity for Gen-Probe® MTD; 64.7% (33/51) sensitivity for Roche Amplicor®; 77.8% (14/18) sensitivity for In-house methods. The combined analytical specificity of all methods was 97.5% (156/160) for the 2 M.tb-negative samples: 98.2% (112/114) specificity for Gen-Probe®; 97.1% (33/34) specificity for Roche Amplicor®; 91.7% (11/12) specificity for In-house methods.

The low sensitivities observed for the Roche Amplicor® and In-house methods were primarily due to the 14 false-negative and 2 equivocal results reported for sample TB02-01-3. This was a mixed sample containing a high concentration of M. avium (4.0 x 10⁵ CFU/ml) and a relatively low concentration of M. tuberculosis (2.6 x 10² CFU/ml) that may resemble some clinical specimens. One possible explanation for the decreased sensitivity observed is that the presence of a high concentration of mycobacteria other than M. tuberculosis may interfere with M. tuberculosis detection for
some methods due to competition for genus-specific primer binding sites. These results indicate that the sensitivity thresholds of Roche Amplicor and In-house methods were compromised with this mixed sample.

The four positive interpretations reported for sample # TB02-01-4 negative samples, containing *Mycobacterium avium*, using a variety of methods were apparently random.

Figure 8 is graphical representation of the quantitative results reported for each sample by participant laboratories using the Gen-Probe® MTD test. The indention in each box-plot indicates the median value. The shaded area within the box represents the results between the 25th percentile and 75th percentile of the data. The bracketed areas designate either 1.5 times the interquartile range of the data or the most extreme data point on either side of the median, whichever is the least distance from the median. Each value reported which was outside these ranges is signified by one of the solid lines drawn outside the brackets. For the positive samples, TB02-01-1, TB02-01-2, and TB02-01-3, the median values of all data were 2,508,514, 2,595,729, and 2,605,677 relative light units (RLU), respectively. The median value for the negative sample containing *M. avium*, TB02-01-4, was 2,948 RLU. For the sample containing *M. gordonae*, TB02-01-5, the median value was 2,778.

Figure 9 is a graphical representation of all quantitative results reported for each sample by participant laboratories using the Roche Amplicor® test. The solid line through each set of data represents the median value for each sample. The shaded band represents the equivocal range. For the positive samples, TB02-01-1, TB02-01-2, and TB02-01-3, the median values were 3.000 (A_{450}), 2.000 (A_{450}) and 0.087 (A_{450}), respectively. The very low median value for sample TB02-01-3, compared with other positive samples used in this program, was due to the 12 false-negative and 2 equivocal interpretations reported for this sample. The range of values reported for this sample was 0.054 (A_{450}) - 4.000 (A_{450}). The median value for the negative sample containing *M. avium*, TB02-01-4, was 0.055 (A_{450}). The median value for the sample containing *M. gordonae*, TB02-01-5, was 0.052 (A_{450}).

Tables 1-5 provide the qualitative results reported for individual samples by participants. In most instances the laboratories used the manufacturer's recommended interpretations of quantitative test results. The low overall sensitivity in detecting positive samples was affected by 14/17 false-negative or equivocal interpretations reported for sample TB02-01-3 using the Roche Amplicor® method, and 2/6 false-negative interpretations using In-house methods. This sample was designed to contain a relatively low concentration of *M. tuberculosis* (2.6 x 10^6 CFU/ml) and a higher concentration of *M. avium* (4.0 x 10^7 CFU/ml) such as might be encountered with some clinical specimens. The false-negative results could have been related to competition for genus-specific primer binding sites. Alternatively, the low sample volume used in some procedures could have been a factor. Nevertheless, the sensitivity threshold for Roche Amplicor® and In-house methods was apparently compromised with this sample. The overall specificity was similar to previous results in challenge shipments.
References

2. CDC. Nucleic acid amplification tests for tuberculosis. MMWR 1996; 45:950-951.

Figure 1. Primary Classification of Participating Laboratories

Hospital: 33
Health Department: 29
Independent: 10
Other: 4

N=76

Figure 2. Number of Patient Specimens Tested for \textit{M.tb} Using TB NAA during the Previous Quarter.*

Frequency

22 12 14 8 3 11

Patient Specimens Tested using NAA

*See explanation in the analysis.
Figure 3. Amplification Procedure Used for Direct Detection of *M. tb*

- Gen-Probe MTD: 57% (N=80)
- Roche Amplicor: 17%
- In-house: 5%
- Other: 1%

Figure 4. Biosafety Levels of Participant Laboratories

- Level 3: 40% (N=78)
- Level 2 with Level 3 Containment Equipment: 23%
- Level 2: 15%
Figure 5. Is the Biological Safety Cabinet that is Used for TB NAA Testing Used for Other Purposes?

- Other: 25
- Only used for TB NAA testing: 24
- Also for TB specimen processing: 15
- Only for NAA testing: 14

N=78

Figure 6. Use of Uni-directional Workflow by Participating Laboratories

- Yes: 70
- No: 9

N=79
Figure 7. Frequency of TB NAA Qualitative Test Results by Sample Type for the Gen-Probe MTD, Roche Amplicor, and In-House Methods

Gen-Probe MTD

- Negative Samples; n = 2
 - 112 Negative
 - 2 Positive

- Positive Samples; n = 3
 - 170 Positive

Roche Amplicor

- Negative Samples; n = 2
 - 33 Negative
 - 0 Equivocal
 - 1 Positive

- Positive Samples; n = 3
 - 15 Negative
 - 3 Equivocal
 - 33 Positive

In-House

- Negative Samples; n = 2
 - 11 Negative
 - 0 Equivocal
 - 1 Positive

- Positive Samples; n = 3
 - 14 Positive

Test Result Interpretations:
- Negative
- Equivocal
- Positive
Figure 8. Quantitative Results for GenProbe® MTD

Positive Samples

M. tb
M. tb
M. tb & M. avium

Negative Samples

M. avium
M. gordonae

Note: Dashed line (---) represents cut-off between positive and negative values (30,000 RLUs).
Figure 9. Quantitative Results for Roche Amplicor®

Positive Samples

Negative Samples

Sample Name

Note: Shaded areas represent equivocal range.
The following tables summarize qualitative results reported by participant laboratories for the January 2002 shipment of samples for the *M. tb*. NAA testing performance evaluation program.

Table 1. Sample TB02-01-1 contained *Mycobacterium tuberculosis*

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>No. Tests Performed</th>
<th>Positive No.</th>
<th>%</th>
<th>Equivocal No.</th>
<th>%</th>
<th>Negative No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen-Probe</td>
<td>57</td>
<td>57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In-house</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roche</td>
<td>17</td>
<td>17</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All methods</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Sample TB02-01-2 contained *Mycobacterium tuberculosis*

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>No. Tests Performed</th>
<th>Positive No.</th>
<th>%</th>
<th>Equivocal No.</th>
<th>%</th>
<th>Negative No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen-Probe</td>
<td>57</td>
<td>56</td>
<td>98.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>In-house</td>
<td>6</td>
<td>4</td>
<td>66.7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>33.3</td>
</tr>
<tr>
<td>Roche</td>
<td>17</td>
<td>13</td>
<td>76.5</td>
<td>1</td>
<td>5.9</td>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>All methods</td>
<td>80</td>
<td>73</td>
<td>91.3</td>
<td>1</td>
<td>1.3</td>
<td>6</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 3. Sample TB02-01-3 contained *Mycobacterium tuberculosis* and *M. avium*

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>No. Tests Performed</th>
<th>Positive No.</th>
<th>%</th>
<th>Equivocal No.</th>
<th>%</th>
<th>Negative No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen-Probe</td>
<td>57</td>
<td>57</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In-house</td>
<td>6</td>
<td>4</td>
<td>66.7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>33.3</td>
</tr>
<tr>
<td>Roche</td>
<td>17</td>
<td>3</td>
<td>17.6</td>
<td>2</td>
<td>11.8</td>
<td>12</td>
<td>70.6</td>
</tr>
<tr>
<td>All methods</td>
<td>80</td>
<td>64</td>
<td>80.0</td>
<td>2</td>
<td>2.5</td>
<td>14</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Table 4. Sample TB02-01-4 contained *Mycobacterium avium*

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>No. Tests Performed</th>
<th>Positive No.</th>
<th>%</th>
<th>Equivocal No.</th>
<th>%</th>
<th>Negative No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen-Probe</td>
<td>57</td>
<td>2</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>96.5</td>
</tr>
<tr>
<td>In-house</td>
<td>6</td>
<td>1</td>
<td>16.7</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>83.3</td>
</tr>
<tr>
<td>Roche</td>
<td>17</td>
<td>1</td>
<td>5.9</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>94.1</td>
</tr>
<tr>
<td>All methods</td>
<td>80</td>
<td>4</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Table 5. Sample TB02-01-5 contained *Mycobacterium gordonae*

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>No. Tests Performed</th>
<th>Positive No.</th>
<th>%</th>
<th>Equivocal No.</th>
<th>%</th>
<th>Negative No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen-Probe</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>100</td>
</tr>
<tr>
<td>In-house</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Roche</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>All methods</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>