HIV-1 Rapid Testing MPEP June 2007 Report of Results

Coordination of report production

The production of this report was coordinated in CDC by:

Division of Laboratory Systems D. Joe Boone, Ph.D., Acting Director
Division of Laboratory Systems.......................... Dev Howerton, Ph.D., Acting Deputy Director
Laboratory Practice Evaluation and Genomics Branch................................. G. David Cross, M.S., Acting Chief

Report content

The material in this report was developed and prepared by:

Model Performance Evaluation Program (MPEP)......... G. David Cross, M.S., Manager

MPEP HIV-1 Rapid Testing Performance Evaluation..... Leigh Inge Vaughan, B.A., HIV Rapid Testing Project Coordinator

MPEP acknowledges the contributions of Daline Derival, M.P.H., Laura Goubeaux, B.S. and Courtney Rodi, B.A., PMP of Constella Group, LLC for their help in preparing this report.

Use of trade names and commercial sources is for identification only and does not constitute endorsement by the Public Health Service or the U.S. Department of Health and Human Services.

Contact information

Comments and inquiries regarding this report should be directed to:

Ms. Leigh Vaughan: telephone (404) 718-1005; email LVaughan@cdc.gov
Table of Contents

Donor Report (Table 1)... 3

Report of Results: Overview... 4
 Purpose.. 4
 Response rate.. 4
 Overall performance.. 4
 Table 2: Percentages of positive and negative results by donor type........ 4
 MPEP Plasma samples, summary results.................................. 5
 Changes in specimen type... 5
 Confirmatory testing practices... 5

Challenge Samples... 6
 Sample description.. 6
 Description of challenge samples.. 6

Demographics... 7
 Overview.. 7
 Figure 1: Number of U.S. participants returning results............. 7
 Table 3: Number of non-U.S. participants returning results........ 8
 Figure 2: Type of testing sites, by U.S. & non-U.S.................... 9

Detailed Performance Results... 10
 Table 4: Results by donor... 10
 Table 5: Accuracy for all samples by kit type.......................... 11

Kit Types Used by Participants.. 12
 Overview.. 12
 Figure 3: Kit types.. 12
 Figure 4: Testing site by kit type... 13

Specimen Types Used by Participants.. 14
 Overview.. 14
 Figure 5: Specimen types... 14

Quality Control (QC).. 15
 Overview.. 15
 Figure 6: Frequency of use of controls.................................... 15

Confirmatory Testing... 16
 Overview.. 16
 Figure 7: Types of confirmatory testing.................................. 17

Conclusions and Discussion... 18
 Overall performance... 18
 Specimen types... 18
 Errors on positive samples.. 18
 Confirmatory testing... 19
 Guidelines.. 20
 References... 20

Topical Issues in HIV Rapid Testing.. 21
 Introduction.. 21
 FAQs: June 2007 survey... 21
 Highlights of previous FAQs.. 21
 CDC websites.. 22
 HIV rapid testing resources... 22
Donor Report

HIV Rapid Testing MPEP June 2007

Panel and Vial Designations, CDC Donor Numbers, CDC HIV Rapid Test Results and Donor HIV Status

<table>
<thead>
<tr>
<th>Panel Letter</th>
<th>Vial Label</th>
<th>CDC Donor Number</th>
<th>CDC Test Result(^1)</th>
<th>Donor HIV Status</th>
<th>Laboratory Interpretation(^2) and/or Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>12</td>
<td>Positive (S)</td>
<td>Infected</td>
<td>Test Result:</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>20</td>
<td>Positive (W)</td>
<td>Infected</td>
<td>Interpretation:</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>12*</td>
<td>Positive (S)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>21</td>
<td>Positive (W)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>21*</td>
<td>Positive (W)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>6</td>
<td>Negative (N)</td>
<td>Uninfected</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>20</td>
<td>Positive (W)</td>
<td>Infected</td>
<td>Test Result:</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>12</td>
<td>Positive (S)</td>
<td>Infected</td>
<td>Interpretation:</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>21</td>
<td>Positive (W)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>12*</td>
<td>Positive (S)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>6</td>
<td>Negative (N)</td>
<td>Uninfected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>21*</td>
<td>Positive (W)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>21</td>
<td>Positive (W)</td>
<td>Infected</td>
<td>Test Result:</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>21*</td>
<td>Positive (W)</td>
<td>Infected</td>
<td>Interpretation:</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>12</td>
<td>Positive (S)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>6</td>
<td>Negative (N)</td>
<td>Uninfected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>12*</td>
<td>Positive (S)</td>
<td>Infected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>20</td>
<td>Positive (W)</td>
<td>Infected</td>
<td></td>
</tr>
</tbody>
</table>

D	D1	21	Positive (W)	Infected	Test Result:
	D2	21*	Positive (W)	Infected	Interpretation:
	D3	6	Negative (N)	Uninfected	
	D4	12	Positive (S)	Infected	
	D5	20	Positive (W)	Infected	
	D6	12*	Positive (S)	Infected	

* Duplicate donors

\(^1\) The CDC result was obtained after pre-shipment testing for the presence of HIV-1 antibody with all commercially available HIV Rapid Testing kits licensed by the Food and Drug Administration (FDA) and with selected FDA-licensed Enzyme Immunoassay (ELA) kits. The CDC result is consistent with the manufacturers’ criteria for interpretation of results.

\(^2\) Laboratory Interpretation space (to be completed by participant laboratory) provided to facilitate comparison of participant laboratory result with CDC result.

\(^3\) Strong (S) and Weak (W) designations are based on qualitative observations of the colorimetric test results for reactive samples.
Report of Results: Overview

Purpose

This report describes the results of the HIV Rapid Testing Model Performance Evaluation Program (HIV-RT MPEP) shipment survey shipped in June 2007. It represents a collection of results reported by a variety of testing sites using different HIV rapid test kits on six challenge samples.

The six survey samples were derived from four individual donors and included two duplicate samples. These samples represent donors matched to the previous survey (December 2006).

The major findings are summarized below.

Response rate

The survey shipment was sent to 660 testing sites within and outside of the United States. Responses were received from 580 (87.9%) of the testing sites. Of those responding:

- 511 (88.1%) were U.S. testing sites, and
- 69 (11.9%) were non-U.S. testing sites.

Note:

Twenty-one testing sites submitted multiple result forms, indicating the use of two to three different test kits, so that the total number of responses was 610.

Overall performance

Overall accuracy (percent of correct results) for all samples, by all sites with all kit types, was 93.8% (3,406/3,630). “Indeterminate” result interpretations were considered to be incorrect, and “Invalid” result interpretations were not included in the analyses. (Twenty-nine invalid results were reported by twenty-seven testing sites. These tended to be related to the use of flow-through testing devices, e.g. absorption difficulties.)

A summary of results for all challenges is shown in the following table:

Table 2: Percentages of positive and negative results by donor type

<table>
<thead>
<tr>
<th>Total # of Facilities</th>
<th>Positive Results</th>
<th>False Negative (% False Neg.)</th>
<th>Negative/Non-Reactive Results</th>
<th>False Positives (% False Pos.)</th>
<th>Overall Performance (TP + TN/Total # of Results)</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>3630</td>
<td>2827</td>
<td>196 (6.4%)</td>
<td>579</td>
<td>5 (0.8%)</td>
</tr>
</tbody>
</table>

*Ind= Indeterminate

Continued on next page
Report of Results: Overview, Continued

MPEP plasma samples, summary results

- The MPEP plasma **positive challenges** included one strong-positive sample (Donor 12) and two weak-positive samples (Donors 20 and 21).
- The current survey was "matched" to the December 2006 survey; i.e. the samples in both surveys originated from the same donor materials.
- The 196 false-negative and 20 indeterminate results represent a rate of error similar to that of the December 2006 survey, which is a notably higher error rate than in previous surveys; of these 216 incorrect results reported for positive challenges:
 - 5 (2.3%) were reported for Donor 12,
 - 126 (58.3%) were reported for Donor 20 and
 - 85 (39.4%) were reported for Donor 21.
 - Overall accuracy for MPEP plasma positive samples was 92.9% (2827/3043).
 - Accuracy varied with test kit used (40.0% - 100%).
 - The kit types used by reporting participants were as follows:

<table>
<thead>
<tr>
<th>Rapid HIV kit type</th>
<th># sites</th>
<th># false-negatives (n=196)</th>
<th># indeterminates (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OraSure OraQuick ADVANCE</td>
<td>353</td>
<td>95</td>
<td>10</td>
</tr>
<tr>
<td>Trinity Biotech Unigold Recombigen</td>
<td>83</td>
<td>65</td>
<td>3</td>
</tr>
<tr>
<td>MedMira Reveal G2 or G3</td>
<td>72</td>
<td>21</td>
<td>2</td>
</tr>
</tbody>
</table>

- Five false positive and three indeterminate results were reported on the **negative challenge** (Donor 6).
 - Overall accuracy was 98.6% (579/587).
 - Three out of the five false positive results were associated with use of the OraSure OraQuick ADVANCE Rapid HIV 1/2 Ab Test.

Changes in specimen type

- **Oral fluid (oral mucosal transudate) as a specimen type:**
 - was indicated in 142 responses by sites using the OraSure OraQuick ADVANCE Rapid HIV-1/2 test kit,
 - showed an increase in usage from the 103 responses reported to MPEP in the December 2006 survey,
 - was used primarily in the U.S. (139/142, 97.9%) by sites identified as:
 - health department (21/139, 15.1%),
 - counseling and testing (33/139, 23.7%)
 - community based organization (CBO) (49/139, 35.3%)
 - family planning center (12/139, 8.6%)
 - sexually transmitted disease (STD) clinic (7/139, 5.0%) or
 - hospital (6/139, 4.3%).

Confirmatory testing practices

Seventeen U.S. testing sites indicated that only EIA (in-house or sent out) was done for confirmation of a preliminary positive (reactive) rapid test result.

CDC guidelines state that reactive rapid HIV tests should be confirmed with Western blot (WB) or indirect immunofluorescence assay (IFA), even if a subsequent EIA is nonreactive. **It is the responsibility of each testing site to ensure that appropriate guidelines are being followed**, regardless of where the confirmatory tests are performed.
Challenge Samples

Sample description

The plasma samples for this challenge shipment of the HIV-RT MPEP were shipped in June 2007.

The six samples for this shipment were from four donors:
- one strong HIV-1 antibody positive (in duplicate),
- two weak HIV-1 antibody positive (one in duplicate), and
- one HIV-1 antibody negative.

Description of challenge samples

All sample plasma were single bleeds drawn from individual donors. The resulting plasma for all samples was tested to determine HIV-1 antibody reactivity.

The samples for the June 2007 HIV Rapid Testing MPEP survey were processed as follows:

- All donor samples were clarified prior to dispensing and tested to ensure they were free of bacterial contamination.

- HIV-1 antibody-positive plasma samples were heat-treated at 56°C for 60 minutes to inactivate infectious agents, whereas HIV-antibody-negative samples were not heat-treated.

- The serostatus of both positive and negative samples was confirmed by all FDA-approved rapid HIV antibody tests, as well as selected FDA-approved EIA and Western blot kits.

- Negative samples were negative for HIV-1 antigen using an FDA-approved monoclonal antibody-based p24 antigen test.

- Positive samples were selected using the following criteria:
 - reactive by the Genetic Systems rLAV enzyme immunoassay kit at a signal-to-cutoff ratio between 3 and 5 for the weak-positive seroconverter samples and greater than 5 for the strong-positive samples, and
 - positive by the APHL/CDC interpretive criteria for Western blot (WB) patterns.

The strong-positive sample and one of the weak positive samples were included in the shipment in duplicate.
Demographics

Overview

A total number of 580 different testing sites (foreign and domestic) submitted results. Of these:

- the 511 domestic testing sites are depicted in Figure 1, and
- the 69 non-U.S. testing sites are listed in Table 3.

The types of testing sites for responding participants are depicted in Figure 2:

- The number of non-U.S. participants in the current survey (69) was similar to the previous survey (December 2006, n = 67).
- Non-U.S. participants included over 1/3 of the countries in the Global AIDS Program (GAP).
- The number of U.S. participants in the current survey (511) was greater by 10.8% from that of the previous survey (461).
- In the U.S., hospital testing sites predominated.

Figure 1

Number of MPEP HIV Rapid Testing Laboratories Returning Results in the United States and Territories

[Map showing distribution of testing sites across the United States and territories, with states shaded in different colors representing different ranges of testing sites.

Virgin Islands = 0

N = 511

Continued on next page]
Demographics, Continued

The following table shows the breakdown of participants outside the United States.

Table 3

<table>
<thead>
<tr>
<th>Country</th>
<th>Number</th>
<th>Country</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>2</td>
<td>Indonesia</td>
<td>1</td>
</tr>
<tr>
<td>Bahamas</td>
<td>1</td>
<td>Kenya</td>
<td>1</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1</td>
<td>Liberia</td>
<td>1</td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>Malawi</td>
<td>1</td>
</tr>
<tr>
<td>Botswana</td>
<td>5</td>
<td>Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>Brazil</td>
<td>1</td>
<td>Mali</td>
<td>1</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>1</td>
<td>Nepal</td>
<td>1</td>
</tr>
<tr>
<td>Burundi</td>
<td>1</td>
<td>Niger</td>
<td>1</td>
</tr>
<tr>
<td>Cameroon</td>
<td>2</td>
<td>Nigeria</td>
<td>1</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
<td>Panama</td>
<td>1</td>
</tr>
<tr>
<td>Columbia</td>
<td>1</td>
<td>Peru</td>
<td>1</td>
</tr>
<tr>
<td>Congo</td>
<td>1</td>
<td>Philippines</td>
<td>3</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>1</td>
<td>Republic of Yemen</td>
<td>1</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>1</td>
<td>Senegal</td>
<td>1</td>
</tr>
<tr>
<td>Egypt</td>
<td>1</td>
<td>Slovakia</td>
<td>1</td>
</tr>
<tr>
<td>El Salvador</td>
<td>1</td>
<td>South Korea</td>
<td>1</td>
</tr>
<tr>
<td>Eritrea</td>
<td>1</td>
<td>Suriname</td>
<td>1</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1</td>
<td>Taiwan</td>
<td>1</td>
</tr>
<tr>
<td>Germany</td>
<td>1</td>
<td>Tanzania</td>
<td>7</td>
</tr>
<tr>
<td>Ghana</td>
<td>1</td>
<td>Thailand</td>
<td>6</td>
</tr>
<tr>
<td>Guyana</td>
<td>1</td>
<td>Zambia</td>
<td>2</td>
</tr>
<tr>
<td>Honduras</td>
<td>2</td>
<td>Zimbabwe</td>
<td>1</td>
</tr>
<tr>
<td>India</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 69

Continued on next page
Demographics, Continued

The types of testing sites for all participants in the current survey are shown in Figure 2, by U.S. and non-U.S. participants.

![Bar chart showing the types of testing sites by U.S. and non-U.S. participants.]

Figure 2:
Types of testing sites, by U.S. & non-U.S.

*Abbreviations:

CBO = community based organization
CT Site = counseling and testing site
FP Ctr = family planning center

** “Other” facility type includes:
- health maintenance organization (HMO)
- medical examiner
- sexually transmitted disease (STD) clinic
- correctional facility
- drug treatment center
- mobile unit

† 1/24 of the Non-U.S. “Other” type of testing sites were mobile units associated with U.S. embassies.
Detailed Performance Results

Table 4 below gives the reactivity results by donor.

<table>
<thead>
<tr>
<th>Donor Number</th>
<th># of Participants</th>
<th># of Results*</th>
<th># Pos.</th>
<th># Neg.</th>
<th># Ind</th>
<th>% Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (Negative)</td>
<td>580</td>
<td>587</td>
<td>5</td>
<td>579</td>
<td>3</td>
<td>98.6%</td>
</tr>
<tr>
<td>12 (Strong Pos)</td>
<td>580</td>
<td>1215</td>
<td>1210</td>
<td>4</td>
<td>1</td>
<td>99.6%</td>
</tr>
<tr>
<td>20 (Weak Pos)</td>
<td>580</td>
<td>609</td>
<td>483</td>
<td>119</td>
<td>7</td>
<td>79.3%</td>
</tr>
<tr>
<td>21 (Weak Pos)</td>
<td>580</td>
<td>1219</td>
<td>1134</td>
<td>73</td>
<td>12</td>
<td>93.0%</td>
</tr>
</tbody>
</table>

* Some testing sites used more than one type of testing kit, therefore, the total number of results may exceed the total number of participants.

MPEP plasma samples, detailed performance results

MPEP Negative Sample (Donor 6):
- Five false-positive results were reported; four by U.S. sites, and one by a non-U.S. site.
- Three indeterminate results were reported.

MPEP Positive Samples:
- There were 216 incorrect results on the MPEP HIV-positive samples. Of these:
 - One-hundred and ninety-six were false negative errors (181 by U.S. and 15 by non-U.S. sites), with
 - Four errors reported for strong-positive Donor 12,
 - One-hundred and nineteen errors reported for weak-positive Donor 20, and
 - Seventy-three errors reported for weak-positive Donor 21.
 - Twenty were indeterminate results.
Detailed Performance Results, Continued

Table 5 gives the accuracy for all samples by kit type.

<table>
<thead>
<tr>
<th>Kit Type (manufacturer)</th>
<th>Reactive Positive</th>
<th>Reactive Negative</th>
<th>Non-Reactive Positive</th>
<th>Non-Reactive Negative</th>
<th># of Sites</th>
<th># of Results</th>
<th># of Correct</th>
<th>%</th>
<th># of Incorrect</th>
<th>%</th>
<th># of Total</th>
<th>%</th>
<th># of Correct</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>OraQuick ADVANCE Rapid HIV-1/2 As Test (Gilead)</td>
<td>369</td>
<td>351</td>
<td>1</td>
<td>0</td>
<td>333</td>
<td>351</td>
<td>3</td>
<td>94.1%</td>
<td>3</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td>94.1%</td>
<td>0</td>
</tr>
<tr>
<td>Reveal G2 Rapid HIV-1</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>33</td>
<td>3</td>
<td>93.3%</td>
<td>3</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td>93.3%</td>
<td>0</td>
</tr>
<tr>
<td>Abbott HIV-1/2 (Abbott)</td>
<td>69</td>
<td>344</td>
<td>3</td>
<td>1</td>
<td>322</td>
<td>200</td>
<td>4</td>
<td>99.3%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>99.3%</td>
<td>0</td>
</tr>
<tr>
<td>Alere HIV-1/2 (Abbott)</td>
<td>45</td>
<td>222</td>
<td>5</td>
<td>1</td>
<td>165</td>
<td>5</td>
<td>4</td>
<td>97.3%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>97.3%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold HIV-1</td>
<td>83</td>
<td>415</td>
<td>65</td>
<td>3</td>
<td>347</td>
<td>65</td>
<td>1</td>
<td>99.3%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>99.3%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold HIV-2</td>
<td>9</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>4</td>
<td>9</td>
<td>96.3%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>96.3%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>5</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>90.0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>90.0%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>7</td>
<td>35</td>
<td>33</td>
<td>1</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>94.3%</td>
<td>2</td>
<td>0</td>
<td>100%</td>
<td>2</td>
<td>94.3%</td>
<td>2</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>4</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>7</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Biotech Uni-Gold (Trinity)</td>
<td>21</td>
<td>110</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>1</td>
<td>3</td>
<td>96.4%</td>
<td>22</td>
<td>0</td>
<td>100%</td>
<td>22</td>
<td>96.4%</td>
<td>22</td>
</tr>
</tbody>
</table>
Kit Types Used By Participants

Overview
This section describes the kit types used by participants.

- The predominant kit type used in the U.S. was OraQuick ADVANCE Rapid HIV 1/2 Ab test (68.1%, 348/511), as shown in Figure 3:

- The predominant kit type used in non-U.S. testing sites was Abbott Determine HIV-1/2 (65.2%; 45/69).

- Kit usage by lab type is shown in Figure 4.

Figure 3:

<table>
<thead>
<tr>
<th>Kit type</th>
<th>U.S. (n=524)</th>
<th>Non-U.S. (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OraQuick ADVANCE HIV-1/2 Ab (Orasure)</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>Uni-Gold Recombigen (Trinity Biotech)</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Reveal G3 or G2 Rapid HIV-1 (MedMira)</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Determine HIV-1/2 (Abbott Diagnostics)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Multispot HIV-1/HIV-2 (Bio-Rad)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Chembio HIV ½ Stat Pak (Cassette)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Uni-Gold (Trinity Biotech)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Other *</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

(n = 610 responses)
(N = 580 unique facilities)

* “Other” kit types include:

Standard Diagnostics Bioline (6 non-US, 0 US responses)
Inverness Medical Clearview HIV 1/2 Stat-Pak (0 non-US, 6 US responses)
Trinity Biotech Capillus (4 non-US, 1 US responses)
Fujirebio Serodia HIV-1/2 (4 non-US, 0 US responses)
Fujirebio Serodia HIV (2 non-US, 0 US responses)
J. Mitra & Co. LTD HIV-TRIDOT (1 non-US, 0 US responses)
Other kit type, specified (10 non-US, 0 US responses)

Continued on next page
Kit Types Used By Participants, Continued

The following figure illustrates the usage of the kit types by type of testing site. The methods for which there were twelve or less results are included in the “other kit type” category.

The predominate test kit used was OraQuick ADVANCE Rapid HIV 1/2 Ab Test. The percent of sites using this kit, by type of facility, is as follows:

- hospitals, 46.0%
- health departments, 63.7%
- outreach sites (DTCs, STD clinics, CT sites, family planning centers, mobile units)*, 69.9%
- CBOs*, 94.0%
- blood banks, 50.0%
- physician offices, 53.3%

Note: Some testing sites used more than one type of testing kit.

*Abbreviations:

- CBO = community based organization
- DTC = drug treatment center
- STD = sexually transmitted disease clinic
- IND = independent
- CT Site = counseling and testing site
- CF = correctional facility
- ME = Medical Examiner
- MU = mobile unit
- HMO = health maintenance organization
Specimen Types Used By Participants

Overview: Participants were asked what type of specimens they normally use for HIV rapid tests.
- The breakdown in specimen types reported is shown in Figure 5.
- Testing sites could report using more than one specimen type.

Figure 5: Specimen types

<table>
<thead>
<tr>
<th>Type of Specimen</th>
<th>Number of Responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Fresh</td>
<td>231</td>
<td>22.3%</td>
</tr>
<tr>
<td>Serum Frozen</td>
<td>70</td>
<td>6.7%</td>
</tr>
<tr>
<td>Plasma Fresh</td>
<td>143</td>
<td>13.7%</td>
</tr>
<tr>
<td>Plasma Frozen</td>
<td>56</td>
<td>5.4%</td>
</tr>
<tr>
<td>Whole Blood [Finger Stick]</td>
<td>235</td>
<td>22.6%</td>
</tr>
<tr>
<td>Whole Blood [Venous]</td>
<td>157</td>
<td>15.0%</td>
</tr>
<tr>
<td>Oral Fluid</td>
<td>142</td>
<td>13.7%</td>
</tr>
<tr>
<td>Other*</td>
<td>2</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

(n = 1,036 responses)

* One “Other” specimen type was indicated as dried blood spot and one was not specified.

The type of specimen(s) used in performing HIV rapid testing varied by the type of facility and the method of rapid testing (kit type).

As compared to the previous survey, the number of reports indicating oral fluid use increased slightly, while the actual percentage of use decreased: from 103 (19.5%) to 142 (13.7%).
Quality Control (QC)

Overview
Testing sites were asked if they used quality control (QC) samples, either positive or negative, when performing HIV rapid tests. The frequency of use of quality control materials is shown in Figure 6.

- 577 of the 580 facilities that returned responses answered the question regarding use of quality control samples (question #5).
- Most of these facilities (94.8%, 547/577) indicated the use of QC samples for at least one of the kit types they use at their testing site.
- Of the 1,572 responses indicating the source(s) from which the QC samples (positive and/or negative) were obtained, the sources identified were as follows:
 - controls obtained from the same manufacturer as the test kit (88.4%, 1390/1572),
 - 35.8% (497/1390) were included in the test kit, and
 - 64.2% (893/1390) were purchased from the kit manufacturer separately.
 - in-house controls (5.7%, 89/1572).
 - “Other” manufacturer (manufacturer not the same as for the test kit) controls (5.9%, 93/1572).

Notes:
1. Testing sites could provide more than one answer.
2. Testing sites reporting the use of multiple kit types answered the question separately for each kit type.

Figure 6:
Frequency of use of quality controls

* The most frequent response was 25 tests (Range 20-100)
Confirmatory Testing

Overview

The types of confirmatory testing reported by laboratories varied (as shown in Figure 7).

Note: Testing sites could answer by indicating more than one confirmatory test.

- Most responses given (597/937; 63.7%) indicated that reactive (preliminary positive) specimens were sent to another facility.

- In several cases, EIA was performed alone (24/937; 2.6%) or in combination with other testing (210/937; 22.4%).

- Some responses given (132/937; 14.1%) indicated using a second rapid test for confirmatory testing. Of these, 19/132 (14.4%) indicated using a second rapid test with no other type of confirmatory testing.

Twenty-eight respondents indicated that no confirmatory testing was required to confirm a positive result for the HIV rapid testing kit listed on at least one form. Of these:

- twenty-three sites did not indicate the use of confirmatory testing with any HIV rapid test kit;

 - fourteen were U.S. facilities, with the purpose for using the specified kit being
 ➢ HIV initial testing (e.g. for patients/clients, needlestick and/or source patient): nine testing sites.
 ➢ non-clinical testing (e.g. research, training, etc.) and determination of HIV-1 vs. HIV-2 reactivity: four testing sites.
 ➢ no purpose specified: one testing site.

 - nine were non-U.S. facilities, with the purpose for using the specified kit being
 ➢ HIV initial testing: six testing sites.
 ➢ non-clinical HIV testing: three testing sites.

Continued on next page
Figure 7: Types of confirmatory testing

- WB, sent out: 403 responses
- EIA in our facility: 138 responses
- EIA, sent out: 87 responses
- Second rapid test, same test kit, in our facility: 87 responses
- WB in our facility: 46 responses
- Second rapid test, diff test kit, in our facility: 30 responses
- IFA, sent out: 30 responses
- No confirmatory testing: 14 responses
- Other in our facility: 13 responses
- IFA in our facility: 2 responses
- Other, sent out: 1 response

(n = 937 responses)
(N = 580 unique facilities)

U.S. Participant Responses, n=798
Non-U.S. Participant Responses, n=139
Conclusions and Discussion

Overall performance

Overall accuracy in this shipment was 93.8%:

- 92.9% for the positive samples:
 - 99.6% for Donor 12 (strong positive),
 - 93.0% for Donor 21 (weak positive), and
 - 79.3% for Donor 20 (weak positive).

- 98.6% for the negative samples (Donor 6).

Specimen types

The number of testing sites reporting the use of oral fluid increased from 103 to 142 responses, while the actual percentage of use decreased from 19.5% to 13.7%. Of these, 139 were U.S. testing sites that tended to be community based organizations (CBOs) (49/140), counseling and testing sites (33/140), health departments (21/140), or family planning centers (12/140).

In this survey, 36 U.S. testing sites reported using serum and/or frozen plasma as specimen types for the OraQuick ADVANCE HIV-1/2 Antibody test kits. It should be noted that:

- The OraQuick test is not FDA approved for serum (fresh or frozen) or for frozen plasma specimens.

Use of non-FDA approved specimen types for either of these test kits is considered a modification of the OraQuick testing procedure and makes these non-waived under the Clinical Laboratory Improvement Amendments (CLIA). U.S. facilities should be aware of the CLIA regulations requiring the establishment of performance specifications when modifying an FDA-approved test (Sec. 493.1253).\(^5\)

Errors on positive samples

The results from the current survey show a high number of errors on the positive challenge plasma samples (216/3043, 7.1%), similar to the December 2006 survey. As a comparison, the error rates in the previous four surveys were:

- 169/2184 (7.7%) for the December 2006 survey
- 21/1489 (1.4%) for the June 2006 survey,
- 4/1464 (0.3%) for the December 2005 survey, and
- 27/2414 (1.1%) for the June 2005 survey.

The majority of the false-negative errors in the current survey (119/196, 60.7%) were reported for the weak Donor 20 samples in the performance evaluation panels, as was the case in the previous survey of December 2006 (118/153; 77.1%).

Continued on next page
Conclusions and Discussion, Continued

Errors on positive samples (continued)

It should be emphasized that all donor material undergoes extensive validation testing prior to inclusion in an HIV Rapid Testing MPEP survey panel. It was previously noted (in the HIV Rapid Testing Report of Sample Shipment Results, December 2006 at http://www.cdc.gov/mpep/pdf/rapid/RT0612ResultReport.pdf) that the Western blot results for the weak positive samples (Donors 20 and 21) showed highly reactive gp41 and p24 bands, while the gp120 bands were absent. This pattern indicates that these sera come from donors in the early stages of HIV infection (i.e. the donors are seroconverters).

Due to the unusually high error rate associated with weak positive Donor 20 noted previously in the December 2006 sample survey, additional validation testing was performed post-sample shipment. These tests confirmed the HIV-positive status of these samples and indicated results as “reactive/preliminary positive” by all FDA-approved HIV rapid testing kits. The reason for such a large number of false-negatives for the Donor 20 samples in the December 2006 and current survey remains unclear.

As suggested in the December 2006 report, “The errors on the Donor 20 samples may reflect that the concentration of antibody in this donor’s plasma was at the limit of detectability for these test kits. In this case, within the acceptable bounds of quality control variability for sensitivity, a particular lot number for a rapid test kit could have a sensitivity just below that required to detect the antibodies in such a weak sample.

"Alternatively, this weakly-reactive positive challenge sample might have been missed more frequently due to testing technique or the testing/interpretation conditions at the testing site. An extremely light-colored ‘reactive’ test line (or dot) can be so difficult to detect that it requires a particularly high level of confidence by the person interpreting the test to report a ‘reactive’ result. In addition to this confidence, which comes from training and experience, good lighting in the testing area is necessary to correctly interpret a result from a very faint reaction.”

We are considering additional investigation in order to identify the reason(s) for the unusually high false negative rate.

Confirmatory testing

Some U.S. testing sites that use HIV rapid tests for HIV initial testing purposes (i.e. screening) continue to use confirmatory testing algorithms that do not include Western blot (WB) or indirect immunofluorescence assay (IFA) as recommended by the CDC.

U.S. participants are reminded that:

1) HIV rapid tests (RT) are screening tests and reactive results are considered to be “preliminary positives” that must be confirmed by either a WB or IFA test.\(^1,3\)

2) EIA tests for HIV are also considered to be screening, not confirmatory, tests. Some RT reactive specimens confirmed positive by WB or IFA produce negative results using EIAs.

3) CDC Guidelines recommend that preliminary positive (reactive) HIV rapid tests be confirmed with WB or IFA, even if a subsequent EIA test is nonreactive.\(^3\)

Continued on next page
Conclusions and Discussion, Continued

Guidelines

Testing sites are advised to follow appropriate guidelines with respect to performing HIV rapid tests and reporting results.\(^1\),\(^2\),\(^3\) Attention to recognized guidelines and good testing practices is crucial to patient safety and to the delivery of accurate test results.

For example, the CDC has published quality assurance guidelines for testing using the OraQuick rapid test.\(^1\) These guidelines can be applied to other HIV rapid tests performed in U.S. sites.

The guidelines:

- stress that a testing site must have an adequate quality assurance (QA) program in place before offering rapid HIV testing,

- provide recommendations for a comprehensive QA program,

- include recommendations regarding test verification to ensure that the test kits work as expected in a given testing environment, and

- encourage participation in an external quality assessment program, such as the MPEP, and address the logistics for providing confirmatory testing for preliminary positive (reactive) results.\(^1\),\(^3\)

References

3. CDC. Revised guidelines for HIV counseling, testing, and referral. MMWR 2001; 50(No. RR-19):1-57. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5019a1.htm

5. Notice to Readers: Approval of a New Rapid Test for HIV Antibody. MMWR 2002; 51(46): 1051-1052. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5146a5.htm

Topical Issues in HIV Rapid Testing

Introduction
The HIV Rapid Testing Model Performance Evaluation Program (HIV-RT MPEP) strives to be a resource for facilities using HIV rapid testing kits. This section of the HIV-RT MPEP Report of Results, “Topical Issues in HIV Rapid Testing,” is intended to address that part of our mission. We are including:

- **Frequently Asked Questions (FAQs)** by HIV RT MPEP participants to share with all participants our responses to some recent queries,
- **CDC websites** to provide participants with access to timely relevant material published online by the CDC, and
- **HIV Rapid Testing Resources** as a link to long-term references.

FAQs: June 2007 survey
This section provides answers to some of our participants’ frequently asked questions (FAQs).

Q: (from U.S. testing sites) If we participate in your program, will we be satisfying the legal requirements for performing HIV rapid testing on client/patient samples?

A: Not necessarily. The MPEP is not part of any regulatory body; we maintain the confidentiality of our participants’ results. You should check with your state department of health for specific information regarding legal approval for performing HIV rapid testing on clinical specimens.

Highlights of previous FAQs

Q: Can I use an expired kit to do my MPEP sample panel (or patients) if the device control (the control line/dot) within the testing device develops properly?

A: No.

The expiration dates set by the manufacturers reflect the ability of the test kits to produce a valid result for all samples over a specific time frame; while proper development of the device control must occur for a valid test, a valid test result also depends on the tester adhering to ALL of the manufacturer’s instructions—including using a non-expired test kit.

Q: May we use as QC material the positive and/or negative MPEP samples left over from the panels you send us?

A: No, this is an inappropriate use of MPEP samples.

Our samples are validated only for the purpose of performance evaluation (PE) in HIV rapid testing. While we recognize that extra sample volume (i.e. not used to do the test for the survey shipment) in our panels has been, and will continue to be used effectively for training/practice purposes, the “left-over” sample material is not designed to be used in the very important role of Quality Control (QC) samples. Appropriate QC material can be purchased from a number of commercial sources.

For more information on proper specimen labeling and other good laboratory testing practices, please see Good Laboratory Practices for Waived Testing Sites, [MMWR 54(RR13):1-25] at: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5413a1.htm

Continued on next page
Topical Issues in HIV Rapid Testing, Continued

Q: What types of specimens can be used in performing HIV rapid testing?
A: The type(s) of specimens (e.g. whole blood, serum, plasma, oral fluid, etc.) that are appropriate to use for HIV rapid testing depends on the test kit used. Each manufacturer includes information regarding approved specimen type(s) in the package insert for their HIV rapid testing kit.

Q: Can I read my HIV rapid test results as soon as the control line/spot appears?
A: You need to wait the minimum time as specified in the directions given by the manufacturer (as found in the package insert) before reading the result for a client/patient. Even if the within-device control line/spot can be seen, positive specimens may need the full minimum time for the color to develop properly. Please note that you should not read results after the specified maximum time limit.

To view other FAQs in previous HIV RT MPEP reports, please visit our website at: http://wwwn.cdc.gov/mpep/hiv-1rt.aspx

CDC websites

Quick Facts: Rapid Testing
http://www.cdc.gov/hiv/topics/testing/index.htm

MMWR: Notice to Readers: Protocols for Confirmation of Reactive Rapid HIV Tests
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5310a7.htm

Quality Assurance Guidelines for Testing Using the OraQuick® Rapid HIV-1 Antibody Test
http://www.cdc.gov/hiv/topics/testing/resources/guidelines/qa_guide.htm

International Laboratory-related Resource and Activity Directory
http://wwwn.cdc.gov/dls/default.aspx

MMWR: Good Laboratory Practices for Waived Testing Sites
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5413a1.htm

HIV rapid testing resources

Food and Drug Administration (FDA) Licensed / Approved HIV, HTLV and Hepatitis Tests
http://www.fda.gov/cber/products/testkits.htm

The National Center for HIV, STD, and TB Prevention (NCHSTP) Home page
http://www.cdc.gov/nchstp/

The World Health Organization: http://www.who.int/en/