Laboratory Procedure Manual

Analyte:	Creatinine
Matrix:	Refrigerated Serum
Method:	Beckman UniCel [®] DxC800 Synchron
Method No.:	
Revised:	
as performed by:	Collaborative Laboratory Services, L.L.C
Contact:	

Important Information for Users

Collaborative Laboratory Services periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each writeup before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated.

Public Release Data Set Information

This document details the Lab Protocol for testing the items listed in the following table:

Lab Number	Analyte	SAS Label	
	LBXSCR	Creatinine (mg/dL)	
BIOPRO_F	LBDSCRSI	Creatinine (umol/L)	

1. SUMMARY OF TEST PRINCIPLE AND CLINICAL RELEVANCE

The DxC800 modular chemistry side uses the Jaffe rate method (kinetic alkaline picrate) to determine the concentration of creatinine in serum, plasma, or urine. The creatinine calibration is traceable to an isotope dilution mass spectrometry (IDMS) reference method. The method on the DxC800 is IDMS Standardized. A precise volume of sample is introduced into a reaction cup containing an alkaline picrate solution. Absorbance readings are taken at 520 nm between 19 and 25 seconds after sample injection. Creatinine from the sample combines with the reagent to produce a red color complex. The absorbance rate has been shown to be a direct measure of the concentration of the creatinine in the sample.

Creatinine measurements are useful in the diagnosis and treatment of renal diseases.

2. SAFETY PRECAUTIONS

Consider all plasma or serum specimens potentially positive for infectious agents including HIV and the hepatitis B virus. We recommend the hepatitis B vaccination series for all analysts working with whole blood and/or plasma. Observe universal precautions; wear protective gloves, laboratory coats. Place disposable plastic, glass, and paper (pipette tips, gloves, etc.) that contact plasma and any residual sample material in a biohazard bag and keep these bags in appropriate containers until disposal by maceration chlorination. Wipe down all work surfaces with Germicidal Disposable Wipe when work is finished.

Handle acids and bases with extreme care; they are caustic and toxic. Handle organic solvents only in a well-ventilated area or, as required, under a chemical fume hood.

Reagents and solvents used in this study include those listed in Section 6. Material safety data sheets (MSDSs) for these chemicals are readily accessible as hard copies in the lab.

3. COMPUTERIZATION; DATA SYSTEM MANAGEMENT

- a. Microsoft Excel software on a PC and our Laboratory Information Systems (L.I.S.) are used to manage the data. The test is analyzed on a Beckman Coulter UniCel[®] DxC800 Synchron Clinical System. The DxC800 is interfaced to the Laboratory Information Systems (L.I.S.) with a bidirectional interface. After tests are completed, the results will go to the L.I.S. Host Computer Interface to be verified by qualified analyst.
- b. Reflex testing is set up in the L.I.S. to order a repeat of any critical result, to verify abnormal values.
- c. Statistical evaluation of the runs is accomplished with Microsoft Excel software on a PC.
- d. A result file is generated in the L.I.S. database. The file is opened and copied to an Excel spreadsheet for evaluation. The run numbers, and date specimens were received are entered into the Excel file. The Excel spreadsheet results file data are copied to the shipment Excel file and sent using Internet FTP transfer of files or e-mailed to Westat within 21 days of sample receipt.
- e. The Excel files containing all raw data and results are backed up once a week using a CD writer or External drive for storage. Files stored on the L.I.S. network are automatically backed up nightly to tape.
- f. Documentation for data system maintenance is contained in printed copies of data records, as well as in "system log" files on the local hard drives used for the archival of data.

4. SPECIMEN COLLECTION, STORAGE, AND HANDLING PROCEDURES; CRITERIA FOR SPECIMEN REJECTION

- a. Interferences:
 - 1) No interference from hemolysis or lipemia.
 - 2) No interference from $\leq 20 \text{ mg/dL}$ bilirubin.
- b. Separated serum or plasma should not remain at +15°C to +30°C longer than 8 hours. If assays are not completed within 8 hours, serum or plasma should be stored at +2°C to +8°C. If assays are not completed within 48 hours, or the separated sample is to be stored beyond 48 hours, samples should be frozen at -15°C to -20°C. Frozen samples should be thawed only once. Analyte deterioration may occur in samples that are repeatedly frozen and thawed.
- c. Fasting is not required.
- d. A minimum of 0.6 mL serum is needed for the Multi-Analyte Panel.
- e. Sample volume for individual test is 16.5 µl added to 570 µl reagent.
- f. Sample is run singly as part of Multi-analyte Biochemistry Panel.

5. PROCEDURES FOR MICROSCOPIC EXAMINATIONS; CRITERIA FOR REJECTION OF INADEQUATELY PREPARED SLIDES

Not applicable for this procedure

6. EQUIPMENT AND INSTRUMENTATION, MATERIALS, REAGENT PREPARATION, CALIBRATORS (STANDARDS), AND CONTROLS

- a. Instrumentation: Beckman Coulter UniCel® DxC800 Synchron Clinical System
- b. Materials
 - 1) Beckman Micro Tube (*Part #448774*)
 - 2) S/P Plastic Transfer Pipet (*Cat. #P5214-10*)
 - 3) S/P Brand Accutube Flange Caps (*Cat. #T1226-37*)
- c. Reagent Preparation: Synchron Creatinine Reagent Kit (Part #472525).
 - 1) Prepare Creatinine Reagent by pouring Picric Acid Solution into Alkaline Buffer Solution. Replace cap and mix at least 10 times by gentle inversion.
 - 2) Unopened Creatinine Reagent Kit is stable until expiration date when stored at room temperature.
 - 3) The combined Creatinine Reagent is stable on the instrument for 30 days from the date of preparation.
 - 4) Do not freeze or refrigerate. If precipitate has formed in the bottom from cold temperatures during shipping, place reagent in warm water bath to dissolve, then mix well before using.
 - 5) Combined reagent works best if left to stand for \geq 24 hours after preparation.
 - 6) Avoid contact of reagent with skin, eyes, or clothing. In case of spill, flush with large amounts of water.
- d. Standards Preparation: None required.
 - 1) Beckman Synchron Aqua Calibrator 1 and 2 (*Part #471288 and 471291*).
- e. Control Material

1)

- Beckman Triad Custom Unassayed Chemistry Control Serum (Part #465405).
 - After August 19, 2009 Beckman Triad was discontinued. This control was used as regular control for this analyte, but not reported for this project.
- 2) Bio-Rad Liquid Unassayed Multiqual (Cat. #697, 699).
 - Thaw bottle of control and mix very well.
 - Thawed control is stable 7 days. Mix well prior to each use.

After August 19, 2009 Bio-Rad Multiqual used in our lab as the regular control for this analyte.

7. CALIBRATION AND CALIBRATION VERIFICATION PROCEDURES

- a. Calibrators: Synchron Aqua Calibrator 1 and 2 (*Part* #471288 and 471291).
 - 1) Refer to UniCel DxC 600/800 System *Instructions For Use (IFU)* manual for storage and stability information.
 - 2) The DxC creatinine calibrator is traceable to an isotope dilution mass spectrometry (IDMS) reference method.
- b. Calibration:
 - 1) Calibration frequency: 72 hours.
 - 2) Calibration required after loading new reagent and after certain parts replacement and maintenance procedures.
 - Refer to UniCel DxC 600/800 System Instructions for Use (IFU) manual or DxC800 and DxC600 Operating Procedure for programming a calibration.

8. PROCEDURE OPERATING INSTRUCTIONS; CALCULATIONS; INTERPRETATION OF RESULTS

- a. Preliminaries
 - 1) Enter test in L.I.S. as a part of a panel according to procedure listed in this document (See *Attachment A*).
- b. Sample Preparation
 - 1) Procedure for labeling Micro tube (CX tube) and transferring serum (See Attachment B).
- c. Operation
 - Refer to Operation Procedures for programming controls/patients and loading sectors/racks in the Beckman Coulter Synchron UniCel DxC 600/800 System Instructions For Use (IFU) manual or DxC800 and DxC600 Operating Procedure. (See Attachment C for specific procedure for NHANES samples).
- d. Recording of Data
 - 1) Operator will review and verify results in the L.I.S.
 - 2) The L.I.S. reorders tests to verify any critical results. These results are stored in the L.I.S. along with the original results. Original values are used when repeat results match the original within 3 CV.
 - 3) Project supervisor will export data from the L.I.S. into an Excel file. The data is copied in into another Excel file for further evaluation.
 - 4) An Excel spreadsheet printout of the results for each container ID is made and comments noted.
 - 5) Project supervisor reviews the results. If problems noted with results or QC, Project Supervisor investigates and discusses issues if necessary with Laboratory Director. Repeat samples if necessary.
 - 6) Daily log sheets are completed and any problems or issues noted.
 - Replacement and Periodic Maintenance of Key Components
 - f. Calculations

Synchron Systems perform all calculations internally to produce the final reported result. The system will calculate the final result for sample dilutions made by the operator when the dilution factor is entered into the system during sample programming.

9. **REPORTABLE RANGE OF RESULTS**

a. Analytical Range:

e.

- 1) 0.1 25 mg/dL
- 2) Samples out of analytical range high should be diluted with saline or deionized water and reanalyzed. Enter dilution factor at sample information screen or multiply printout by dilution factor to obtain the final result.
- 3) Limits of detection (LOD) are established by Beckman Coulter and linearity data verifies the reportable range. Detection of results below the reportable range is not relevant and formal limit of detection study is unnecessary.
- 4) Sensitivity is defined as the lowest measurable concentration which can be distinguished from zero with 95% confidence. Sensitivity for creatinine determination is 0.1 mg/dL.
- 5) 0 is not a reportable value.

10. QUALITY CONTROL (QC) PROCEDURES

- a. Blind QC Specimens are included in the samples received from NHANES.
- b. Controls are assayed in early A.M. and if a new reagent pack is loaded, controls are assayed again. One level is assayed in middle of the day and both control levels are assayed after running NHANES samples.
- c. BioRad Liquid Unassayed Multiqual Controls Levels 1 and 3 are assayed for CDC-NHANES runs to allow long term control use. Multiqual controls are analyzed at beginning and end of runs with CDC-NHANES samples. Before August 19, 2009 Beckman Triad Custom Unassayed Chemistry Controls Levels 2 and 3 were analyzed in early AM and at times when CDC-NHANES were not being analyzed. As of August 19, 2009 we have discontinued use of Beckman Triad controls.
 d. Acceptable Answer:
 - 1) Controls must be within ± 2 S.D.
 - 2) Refer to Quality Control Flow Chart for action decisions guidelines (See Attachment F).

11. REMEDIAL ACTION IF CALIBRATION OR QC SYSTEMS FAIL TO MEET ACCEPTABLE CRITERIA

Remedial action for out of control conditions includes examination of the pipetting and detection equipment and examination of reagent materials. The QC parameters are compared to the patient means to look for confirmatory or disconfirmatory evidence. When the 2 2s and/or 1 3s rules are violated, samples are repeated following corrective maintenance or reagent changes.

12. LIMITATIONS OF METHOD; INTERFERING SUBSTANCES AND CONDITIONS

- a. Hemolysis has no significant interference.
- b. <a>20 mg/L Bilirubin has no significant interference.
- c. At 30 mg/dL of bilirubin the creatinine value is decreased by ≤ 0.4 mg/dL.
- d. Lipemia has no significant interference.
- e. Acetoacetic acid, cefaclor, cefoxitin, cephalothin, D-Glucose, Gluthathione and Pyruvic Acid demonstrate positive interference.
- f. L-Dopa, Methyl Dopa demonstrates negative interference.
- g. Fluorescein interference suppressed results.
- h. Sulfasalazine and sulfobromophthalein have no significant interference.
- i. Refer to References for other interferences caused by drugs, disease and preanalytical variables.

13. REFERENCE RANGES (NORMAL VALUES)

Creatinine

Serum or Plasma Age Group	mg/dL		
0-1 month 1 mo 1 Y 1-15 Y	Male	0.3-0.8 0.3-0.6 0.3-1.0	Female
>15 Y	0.7-1.3		0.6-1.1

Reference Range values were established from wellness participants with an age mix similar to our patients. These data were analyzed using non-parametric techniques described by Reed (Clin Chem 1971;17:275) and Herrara (J Lab Clin Med 1958;52:34-42) which are summarized in recent editions of Tietz' textbook. Descriptions appear in Clin Chem 1988; 34:1447 and Clinics in Laboratory Medicine June 1993; 13:481.

Pediatric Reference Range Guidelines for Synchron Systems- Multicenter study using data from Montreal, Quebec, Miami, FL and Denver, CO. Beckman 1995

14. CRITICAL CALL RESULTS ("PANIC VALUES")

Values greater than 2.0 mg/dL are called for CLS patients. For this study we early report results if Creatinine is greater than 1.7 mg/dL.

15. SPECIMEN STORAGE AND HANDLING DURING TESTING

Specimens arrive refrigerated. Specimens are kept refrigerated until ready to transfer to Micro tubes. Capped Micro tubes are kept refrigerated until ready to put on instrument.

Specimen vials are returned to container and refrigerated after transfer of aliquot and double checking of pour off tubes. Specimen vial container is placed in -70°C Freezer after testing is complete. Micro tubes are refrigerated, and then frozen after analysis.

16. ALTERNATE METHODS FOR PERFORMING TEST OR STORING SPECIMENS IF TEST SYSTEM FAILS

Samples will remain in refrigerator until instrument is back in operation.

17. TEST RESULT REPORTING SYSTEM; PROTOCOL FOR REPORTING CRITICAL CALLS (IF APPLICABLE)

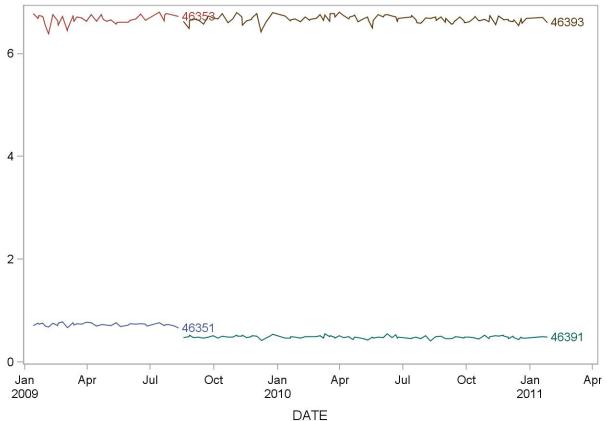
The collaborating agency with access to patient identifiers or the responsible medical officer receives an Excel file with all results for a specimen with any critical values. These files with critical values are sent in advance of results that are not abnormal, unless all results are ready to send at the same time. The earliest reporting of results would be the day after arrival of specimens. More frequently two to three days after receiving specimens.

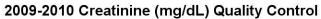
Test results that are not abnormal are reported to the collaborating agency at a frequency and by a method determined by the study coordinator. Generally, data from this analysis are compiled with results from other analyses and sent to the responsible person at the collaborating agency as an Excel file, either through Internet FTP transfer of files or electronic mail or other electronic means.

All data are reported electronically to Westat within 21 days of receipt of specimens.

Internet FTP transfer of files is available and is preferred for data transfer.

18. TRANSFER OR REFERRAL OF SPECIMENS; PROCEDURES FOR SPECIMEN ACCOUNTABILITY AND TRACKING


In general, when specimens are received, the specimen ID number, and a name identifying the container ID and slot number is entered into the Laboratory Information System (L.I.S.) database. New barcodes are printed and the specimens stored in a refrigerator. Samples are aliquoted to a Micro tube with the new barcodes. The specimen ID is read off of the tube by a barcode reader. Tracked in the database are the date and time of entry into the L.I.S., date and time analysis completed, and who certified the results.


Microsoft Excel spreadsheets are used to keep records and track specimens with the data taken from the Laboratory Information System. Logs are kept including information of when samples arrive, are processed and tested, when frozen after testing, and when returned to NHANES for long term storage.

The Project supervisor is responsible for keeping a logbook containing the ID numbers of specimens prepared incorrectly, those with labeling problems, and those with abnormal results, together with information about these discrepancies. It is recommended that records, including related QA/QC data, be maintained for 10 years after completion of the NHANES study.

19. SUMMARY STATISTICS AND QC GRAPHS

Lot	Ν	Start Date	End Date	Mean		Coefficient of Variation
46353	44	13JAN09	11AUG09	6.6674	0.0909	1.4
46351	44	13JAN09	11AUG09	0.7263	0.0320	4.4
46393	106	18AUG09	26JAN11	6.6704	0.0725	1.1
46391	106	18AUG09	26JAN11	0.4855	0.0261	5.4

REFERENCES

- a. Beckman Coulter Synchron Clinical Systems Chemistry Information Manual, 2007.
- b. Tietz, N.W. Textbook of Clinical Chemistry, W.B. Saunders, Philadelphia, PA (1986).
- c. Tietz, N.W., "Specimen Collection and Processing; Sources of Biological Variation," Textbook of Clinical Chemistry, 2nd Edition, W.B. Saunders, Philadelphia, PA (1994).
- d. National Committee for Clinical Laboratory Standards, Procedures for the Handling and Processing of Blood Specimens, Approved Guideline, NCCLS publication H18-A, Villanova, PA (1990).
- e. Tietz, N.W., ed., Clinical Guide to Laboratory Tests, 3rd Edition, W.B. Saunders, Philadelphia, PA (1995).
- f. National Committee for Clinical Laboratory Standards, How to Define, Determine, and Utilize Reference Intervals in the Clinical Laboratory, Approved Guideline, NCCLS publication C28-A, Villanova, PA (1995).
- g. Tietz, N.W., ed., Fundamentals of Clinical Chemistry, 3rd Edition, W.B. Saunders, Philadelphia, PA (1987).
- h. Henry, J.B., ed., Clinical Diagnosis and Management by Laboratory Methods, 18th Edition, W.B. Saunders, Philadelphia, PA (1991).
- i. Young, D.S., Effects of Drugs on Clinical Laboratory Tests, 4th Edition, AACC Press, Washington, D.C. (1995).
- j. Friedman, R.B. and D.S. Young, Effects of Disease on Clinical Laboratory Tests, 3rd Edition, AACC Press, Washington, D.C. (1997).
- k. Young, D.S., Effects of Preanalytical Variables on Clinical Laboratory Tests, 2nd Edition, AACC Press, Washington, D.C. (1997).
- I. National Committee for Clinical Laboratory Standards, Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline, NCCLS publication EP9-A, Villanova, PA (1995).
- m. National Committee for Clinical Laboratory Standards, Precision Performance of Clinical Chemistry Devices, Tentative Guideline, 2nd Edition, NCCLS publication EP5-T2, Villanova, PA (1992).