

Laboratory Procedure Manual

- Analyte: Volatile Organic Compounds (VOCs) Metabolites
- Matrix: Urine

Method: Ultra Performance Liquid Chromatography with Electro Spray Tandem Mass Spectrometry [UPLC ESI/MSMS]

As performed by:

Tobacco and Volatiles Branch Division of Laboratory Sciences National Center for Environmental Health

Contact: Dr. Deepak Bhandari

 Phone:
 770-488-0939

 Fax:
 770-488-0181

 Email:
 xwo1@cdc.gov

James L. Pirkle, M.D., Ph.D. Director, Division of Laboratory Sciences

Important Information for Users

The Centers for Disease Control and Prevention (CDC) periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated.

Public Release Data Set Information

This document details the Lab Protocol for testing the items listed in the following table:

Data File Name	Variable Name	SAS Label
	URX2MH	2-Methylhippuric acid (ng/mL)
	URX34M	3-methipurc acd & 4-methipurc acd(ng/mL)
	URXAAM	N-Ace-S-(2-carbamoylethyl)-L-cys(ng/mL)
	URXAMC	N-Ace-S-(N-methlcarbamoyl)-L-cys(ng/mL)
	URXATC	2-amnothiazolne-4-carbxylic acid(ng/mL)
	URXBMA	N-Acetyl-S-(benzyl)-L-cysteine(ng/mL)
	URXBPM	N-Acetyl-S-(n-propyl)-L-cysteine(ng/mL)
	URXCEM	N-Acetyl-S-(2-Carbxyethyl)-L-Cys(ng/mL)
	URXCYHA	N-Acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine
	URXCYM	N-acetyl-S-(2-cyanoethyl)-L-cyst(ng/mL)
	URXDHB	N-Ace-S- (3,4-Dihydxybutl)-L-Cys(ng/mL)
UVOC_J	URXGAM	N-ac-S-(2-carbmo-2-hydxel)-L-cys(ng/mL)
	URXHEM	N-Ace-S-(2-Hydroxyethyl)-L-cys(ng/mL)
	URXHP2	N-Ace-S-(2-hydroxypropyl)-L-cys(ng/mL)
	URXHPM	N-Ace-S-(3-Hydroxypropyl)-L-Cys(ng/mL)
	URXIPM3	N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L- cysteine
	URXPMM	N-A-S-(3-hydrxprpl-1-metl)-L-cys(ng/mL)
	URXMAD	Mandelic acid(ng/mL)
	URXMB3	N-ace-S-(phenl-2-hydxyetl)-L-cys(ng/mL)
	URXPHE	N-ace-S-(phenl-2-hydxyetl)-L-cys(ng/mL)
	URXPHG	Phenylglyoxylic acid(ng/mL)
	URXTTC	2-thoxothazlidne-4-carbxylic acid(ng/mL)

1. Clinical Relevance and Summary of Test Principle

A. Clinical relevance

Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources. Human exposure to VOCs occurs through inhalation, ingestion, and dermal contact [1]. VOCs are present in virtually all homes and workplaces. Longterm exposure to certain VOCs may increase the risk for leukemia [2], bladder cancer [3], birth defects [4], and neurocognitive impairment [5]. In the United States, tobacco smoke is the major non-occupational source of exposure to a number of harmful VOCs. Tobacco smoke contains over 8000 chemicals, including a number of carcinogenic and toxic VOCs (e.g., benzene, vinyl chloride, ethylene oxide, 1,3-butadiene, and acrolein) [6-8]. Regardless of exposure source, high levels of toxic VOCs is an area of significant public health concern [9]. Monitoring urinary metabolites of VOCs provides complimentary data to measuring VOCs in exhaled breath or blood, and a longer time window during which biomarkers are elevated following cessation of exposure to VOCs. The non-invasive sampling of urine, longer physiological half-lives of mercapturic acids, and relatively high degree of specificity make urinary mercapturic acids useful biomarkers of exposure to VOCs. Mercapturic acids are formed primarily through the metabolism of VOCs via the glutathione pathway. VOCs and/or their metabolites can react with glutathione (GSH), and undergo further metabolism to form mercapturic acids. These metabolites are then removed from the blood by the kidneys and excreted into urine.

Table 1 shows the urinary VOC metabolites monitored using the current method. We also list the parent compound(s) from which these metabolites can be formed. Except for perchloroethylene (PERC; also known as tetrachloroethylene), 1-bromopropane, and trichloroethylene (TCE) all other parent compounds are constituents of tobacco smoke.

Acrolein is present in various cooked foods and in the environment. It is formed from carbohydrates, vegetable oils, animal fats, and amino acids during heating of foods, and by combustion of petroleum fuels and biodiesel. Smoking tobacco products is typically the largest source of acrolein exposure [10]. Acrolein induces necrotic and apoptotic cell death in humans. Acrylamide is used to produce polymers, formulation of cosmetics and body care products, and in the textile industry. Acrylamide is also a constituent of a normal diet. Acrylamide is formed during the heating of carbohydrate rich food (e.g., French fries, potato chips). It is also a component of cigarette smoke [11]. The acrylamide metabolite, glycidamide, is a putative mutagen and most directly related to acrylamide's carcinogenicity. Acrylonitrile is widely used in the manufacture of plastics, acrylic fibers, and synthetic rubber, and is considered as a probable human carcinogen [12]. Benzene is a group 1 carcinogen [13]. It is found in crude oil, gasoline, and tobacco smoke. 1,3-Butadiene is mainly used for production of synthetic rubber alone or as a copolymer with styrene. Environmental sources of 1,3-butadiene are automobile exhaust, exhaust from heating, and cigarette smoke [14]. 1.3-Butadiene is characterized as being carcinogenic to humans by inhalation. Carbon disulfide exposure can affect cardiovascular and nervous systems [15]. A major source of exposure to crotonaldehyde is mainstream and side stream tobacco smoke [16]. It also occurs naturally in food and forms during combustion of organic materials. A recent study reported that crotonaldehyde exposure induces oxidative stress and apoptosis in human bronchial epithelial cells [17]. There are multiple sources of exposure to cyanide other than tobacco smoke (e.g., cyanide from food and from amino acid catabolism) [18]. N,N-Dimethylformamide (DMF) is a

solvent that is used in the production of electronic compounds, pharmaceutical products, and textile coatings; and in the manufacture of synthetic leather, polyurethane, and polyacrylonitrile fibers [19]. Ethylene oxide, which is used as an intermediate in the production of ethylene glycol and other oxide derivatives, has been associated with leukemia [20]. Propylene oxide, which is used in industry as a chemical intermediate in the production of propylene glycols and glycol ethers, has been classified as a probable human carcinogen (group 2B) by the IARC [21]. Styrene is one of the most important chemicals used worldwide to manufacture plastics, synthetic rubber, and resins; and it is an environmental contaminant present in food, tobacco, and engine exhaust. The IARC classified styrene as possibly carcinogenic to humans [22]. Xylenes and toluene are widely used in industry as organic solvents, ingredients of thinners, and in the synthesis of other chemicals [23]. Acute toluene exposure can cause disorientation, euphoria, exhilaration, and tinnitus [24]. Vinyl chloride exposure can cause angiosarcoma [25]. Isoprene, the 2-methyl analog of 1,3-butadiene, has been classified as possibly carcinogenic to humans (group 2B) by IARC. It is mainly used in synthetic rubber production. Tobacco smoke also imposes significant isoprene exposure to humans [29]. PERC and 1-bromopropane are widely used as dry cleaning and metal degreasing solvents. PERC is a hazardous air pollutant, a common contaminant detected at superfund waste sites, and is a surface and ground water pollutant [26]. Over 400 million pounds of PERC are produced annually in the United States. 1-Bromopropane is reported to cause reproductive toxicity in male rats and neurotoxicity in both rats and humans [27]. Trichloroethylene (TCE) is an important industrial chemical widely used because of its favorable solvent characteristics, chemical stability, and relatively low acute toxicity. However, the studies show that the mutagenic and nephrotoxic metabolite formed in human trichloroethylene metabolism could be a risk of nephrocarcinogenesis associated with trichloroethylene exposure [28].

Urinary VOC metabolite biomonitoring data will provide useful baseline information about VOC exposures in the US population.

Parent compound	VOC metabolite	Acronym	Code
Acrolein	N-Acetyl-S- (2-carboxyethyl)-L-cysteine	2CoEMA	CEMA
	N-Acetyl-S- (3-hydroxypropyl)-L-cysteine	3HPMA	HPMA
Acrylamide	N-Acetyl-S-(2-carbamoylethyl)-L-cysteine	2CaEMA	AAMA
	N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	2CaHEMA	GAMA
Acrylonitrile	N-Acetyl-S-(2-cyanoethyl)-L-cysteine	2CyEMA	СҮМА
	N-Acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine	1CyHEMA	СҮНА
Acrylonitrile, vinyl chloride, ethylene oxide	N-Acetyl-S- (2-hydroxyethyl)-L-cysteine	2HEMA	HEMA
1-Bromopropane	N-Acetyl-S-(n-propyl)-L-cysteine	1PMA	BPMA
1,3-Butadiene	N-Acetyl-S- (3,4-dihydroxybutyl)-L-cysteine	34HBMA	DHBM
	N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine	4HBeMA	MHB3
Carbon disulfide	2-Thioxothiazolidine-4-carboxylic acid	TTCA	TTCA
Crotonaldehyde	N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine	3HMPMA	HPMM
Cyanide	2-Aminothiazoline-4-carboxylic acid	2ATCA	ATCA
<i>N</i> , <i>N</i> - Dimethylformamide, methyl isocyanate	N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine	MCaMA	AMCA
Ethylbenzene, styrene	Phenylglyoxylic acid	PhGA	PHGA
Isoprene	N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine	4HMBeMA	IPM3
Propylene oxide	N-Acetyl-S-(2-hydroxypropyl)-L-cysteine	2HPMA	HPM2
Styrene	N-Acetyl-S-(1-phenyl-2-hydroxyethyl-L-cysteine +		
	N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine	2HPhEMA	PHEM
Styrene, ethylbenzene	Mandelic acid	MADA	MADA
Toluene, benzyl alcohol	N-Acetyl-S-(benzyl)-L-cysteine	BzMA	BMA
Xylene	2-Methylhippuric acid	2MHA	2MHA
	3-Methylhippuric acid + 4-Methylhippuric acid	3MHA+4MHA	34MH

Table 1. VOC metabolites and their parent compounds

B. Test principle

This method is a quantitative procedure for the measurement of VOC metabolites in human urine using ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) [30]. Currently, chromatographic separation is achieved by using a C18 reversed phase column with 15 mM ammonium acetate and acetonitrile as the mobile phases. The choice of column and mobile phases should be such that it ensures adequate baseline separation among the metabolites and minimizes any background interferences. The eluate from the column is ionized using an electrospray interface to generate and transmit negative ions into the mass spectrometer. Comparison of relative response factors (ratio of native analyte to stable isotope labeled internal standard) with known standard concentrations yields individual analyte concentrations.

2. Safety Precautions

A. Reagent toxicity or carcinogenicity

The chemical, physical, and toxicological properties of most of the VOC metabolites have not been thoroughly investigated. Contact of VOC metabolites with strong oxidizing agents should be avoided as this could generate toxic fumes of carbon monoxide, carbon dioxide, nitrogen oxides, and sulfur oxides. However, aqueous solutions of VOC metabolites do not present a fire or explosion hazard. These compounds may cause respiratory tract, skin, and eye irritation. Gloves, lab coat, and safety glasses must be worn while preparing solutions and handling human urine. Disposable plastics (e.g., pipette tips, autosampler tubes, gloves, etc.), glass, and paper that come in contact with urine are placed in a biohazard autoclave bag. These bags are kept in appropriate containers until sealed and autoclaved. All work surfaces are wiped down with 70% ethanol solution (or equivalent) when work is finished.

Observe Universal Precautions. All biological samples and diluted specimens are disposed in a biohazard autoclave bag at the end of the analysis according to CDC/EHLS guidelines for disposal of hazardous waste.

Special precautions must be followed while handling acetonitrile. Acetonitrile is a flammable liquid and a mucous membrane, skin, and eye irritant. If acetonitrile comes in contact with any part of the body, it is to be quickly washed with lots of water.

B. Radioactive hazards

None

C. Microbiological hazards

<u>Follow Universal Precautions.</u> Because of the possibility of exposure to various microbiological hazards, appropriate measures are to be taken to avoid any direct contact with the urine specimen. Gloves, lab coats, and safety glasses must be worn while handling all human urine products. The Hepatitis B vaccination series is recommended for health care and laboratory workers who are exposed to human fluids and tissues.

D. Mechanical hazards

There are only minimal mechanical hazards when performing this procedure using standard safety practices. The manufacturer's information regarding safe operation of the equipment should be read and followed by the laboratory users. Direct contact with the mechanical and electronic components of the mass spectrometer must be avoided unless all power to the instrument is off. Generally, mechanical and electronic maintenance and repair are performed only by qualified technicians. The autosampler and the mass spectrometer contain a number of areas that are hot enough to cause burns. Precautions are to be taken when working in these areas.

E. Protective equipment

Standard safety precautions are followed when performing this procedure, including the use of a lab coat/disposable gown, safety glasses, appropriate gloves, and chemical fume hood.

F. Training

Users are required to demonstrate safe and proper techniques in performing the method and to generate data with acceptable accuracy and precision based on their calibration curves, QCs, and PTs.

G. Personal hygiene

<u>Follow Universal Precautions.</u> Care has to be taken when handling chemicals or any biological specimen. Routine use of gloves, personal protective equipment, and proper hand washing must be practiced. The laboratory Chemical Hygiene Plan and CDC Division of Laboratory Sciences safety policies and procedures are to be consulted for details related to specific activities, reagents, or agents.

H. Disposal of waste

Waste materials must be disposed in compliance with laboratory, federal, state, and local regulations. Solvents and reagents are disposed in an appropriate container clearly marked for waste products and are temporarily stored in a chemical fume hood. All disposable items that come in direct contact with the biological specimens are placed in a biohazard autoclave bag that is kept in appropriate container until sealed and autoclaved. Used unshielded needles, glass Pasteur pipettes, and disposable syringes are immediately placed into a sharps container and autoclaved when this container becomes full. All surfaces are wiped down with 70% ethanol solution (or equivalent) when work is finished.

3. Computerization; Data-System Management

A. Software and knowledge requirements

Different software packages (e.g., Analyst, MultiQuant) are used to control the UPLC system and the mass spectrometer during data acquisition and to analyze chromatograms after the run. Final reportable results are exported to a LIMS database. Knowledge and expertise of these software packages (or their equivalent) are required to utilize and maintain the data management structure.

B. Sample information

Information pertaining to particular specimens is entered into the database either manually or electronically.

C. Data maintenance

All samples and analytical data are checked for transcription errors and overall validity prior to being entered into the LIMS database. The data are routinely backed up locally onto a computer hard drive and in the NCEH network. The local area network manager should be contacted for emergency assistance.

D. Information security

Information security is managed at multiple levels. The information management systems that contain the final reportable results are restricted through user ID and password security access. The computers and instrument systems that contain the raw and processed data files require specific knowledge of software manipulation techniques and physical location. Site security is provided at multiple levels through restricted access to the individual laboratories, buildings, and site.

4. Specimen Collection, Storing and Handling Procedures; Criteria for Specimen Rejection

- A. No special instructions such as fasting or special diets are required.
- **B.** The matrix type is urine.
- C. A total sample volume of 0.25-0.5 mL is required to allow for repeated analysis. An aliquot of at least 50 μ L is needed for typical analysis. However, if the calculated concentration of the analyte is greater than the concentration of the highest calibrator, higher order dilution is required.
- **D.** Acceptable containers include polystyrene cryovial tubes or polypropylene (PP) centrifuge tubes. Sterile collectors should be used for specimen acquisition.
- **E.** The criteria for unacceptable specimen are any suspected contamination due to improper collection procedures or collection devices. In all cases, a second urine specimen should be requested.
- **F.** Specimen characteristics that may compromise test results are as indicated above including contamination of urine by contact with dust, dirt, etc. from improper handling.
- **G.** Detailed instructions for urine collection and processing are outlined in the DLS Policies and Procedures Manual (PPM). Collection, transport, and special requirements are discussed. In general, urine specimens should be transported and stored chilled or frozen at -20°C. Once received, the samples can be frozen at -70°C until time for analysis. Portions of the sample that remain after analytical aliquots are refrozen at -20 or -70°C. Freeze-thawing of samples more than five times is to be avoided.

5. Procedures for Microscopic Examinations; Criteria for Rejection of Inadequately Prepared Slides

Not applicable to this assay

6. Preparation of Reagents, Calibration (Standards), Controls, and all other Materials; Equipment and Instrumentation

A. Reagents and sources

Reagents that were used during the development, validation, and application of this method are listed in **Table 2** along with their suggested sources. All chemicals and solvents are used without further purification. Stable isotopically labelled internal standards listed in the table are for reference purpose only. Other isotopic analogs may be used when there are availability or cost limitations as long as the internal standard is stable and there are no chromatographic or mass spectral interferences.

Reagent	Code	Suggested source
	Solvents	
Acetonitrile (Optima LCMS grade)		Fisher Scientific, Fairlawn, NJ
Ammonium acetate		Sigma Chemicals, St. Louis, MO
Methanol (Optima LCMS grade)		Fisher Scientific, NJ
Isopropyl alcohol (Optima LCMS grade)		Fisher Scientific, NJ
Water (LCMS grade)		Fisher Scientific, Fairlawn, NJ
Native Calibrat	ion and Control Ma	terials
N-Acetyl-S-(benzyl)-L-cysteine	BMA	Battelle Research, Columbus, Ohio
N-Acetyl-S-(2-carbamoylethyl)-L-cysteine	AAMA	C/D/N Isotopes Inc, Quebec, Canada
N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	GAMA	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(2-carboxyethyl)-L-cysteine	CEMA	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(2-cyanoethyl)-L-cysteine	CYMA	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine	DHBM	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(2-hydroxyethyl)-L-cysteine	HEMA	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(2-hydroxypropyl)-L-cysteine	HPM2	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(3-hydroxypropyl)-L-cysteine	HPMA	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine	MHB3	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(3-hydroxypropyl-1 methyl)-L-cysteine	HPMM	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine	AMCA	Sigma Chemicals, St. Louis, MO
N-Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine	PHEM1	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine	PHEM2	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(n-propyl)-L-cysteine	BPMA	Toronto Research Chemicals, Toronto, Canada
2-Aminothiazoline-4-carboxylic acid	ATCA	Chem-Impex International Inc., Woodale, IL
Mandelic acid	MADA	Sigma Chemicals, St. Louis, MO
2-Methylhippuric acid	2MHA	Sigma Chemicals, St. Louis, MO
3-Methylhippuric acid	3MHA	Sigma Chemicals, St. Louis, MO
4-Methylhippuric acid	4MHA	Sigma Chemicals, St. Louis, MO
Phenylglyoxylic acid	PHGA	Sigma Chemicals, St. Louis, MO
2-Thioxothiazolidine-4-carboxylic acid	TTCA	Sigma Chemicals, St. Louis, MO
N-Acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine	СҮНА	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine	IPM3	Toronto Research Chemicals, Toronto, Canada
Isotopically La	beled Internal Stan	dards
N-Acetyl-S-(benzyl- ¹³ C ₆)-L-cysteine	$BMA^{-13}C_6$	Battelle Research Institute, Columbus, Ohio
N-Acetyl-S-(2-carbamoylethyl-D ₄)-L-cysteine	AAMA- D ₄	C/D/N Isotopes Inc, Quebec, Canada
N-Acetyl-D ₃ -S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine	GAMA- D ₃	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(2-carboxyethyl- ¹³ C ₃)-L-cysteine	CEMA- ¹³ C ₃	Cambridge Isotopes, Andover, MA
N-Acetyl-D ₃ -S-(2-cyanoethyl)-L-cysteine	CYMA- D ₃	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(3,4-dihydroxybutyl-13C4)-L-cysteine	DHBM- ¹³ C ₄	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(2-hydroxyethyl-D ₄)-L-cysteine	HEMA- D ₄	Cambridge Isotopes, Andover, MA

Reagent	Code	Suggested source
N-Acetyl-D ₃ -S-(4-hydroxy-2-buten-1-yl)-L-cysteine	MHB3- D ₃	Toronto Research Chemicals, Toronto, Canada
N-Acetyl- ¹³ C-S-(3-hydroxypropyl-1-methyl)-L-cysteine- ¹³ C ₃ - ¹⁵ N	HPMM- ¹³ C ₄ - ¹⁵ N	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine -13C3-15N	AMCA-13C3-15N	Kalexsyn Inc., Kalamazoo, MI
N-Acetyl-S-(1-phenyl-13C6-2-hydroxyethyl)-L-cysteine	PHEM1- ¹³ C ₆	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(2-phenyl-13C6-2-hydroxyethyl)-L-cysteine	PHEM2- ¹³ C ₆	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(n-propyl-D7)-L-cysteine	BPMA-D ₇	Toronto Research Chemicals, Toronto, Canada
2-Aminothiazoline-D ₃ -4-carboxylic acid	ATCA-D ₃	Dr. Bill Draper's Lab, CDPH, CA
Mandelic- ¹³ C ₈ acid	MADA- ¹³ C ₈	Cambridge Isotopes, Andover, MA
2-Methylhippuric- ¹³ C ₆ acid	2MHA- ¹³ C ₆	Toronto Research Chemicals, Toronto, Canada
3-Methylhippuric-D ₇ acid	3MHA-D ₇	C/D/N Isotopes Inc, Quebec, Canada
4-Methylhippuric- ¹³ C ₂ - ¹⁵ N acid	4MHA- ¹³ C ₂ - ¹⁵ N	Cambridge Isotopes, Andover, MA
Phenylglyoxylic- ¹³ C ₈ acid	PHGA- ¹³ C ₈	Toronto Research Chemicals, Toronto, Canada
2-Thioxothiazolidine- ¹³ C ₃ -4-carboxylic acid	TTCA- ¹³ C ₃	Cambridge Isotopes, Andover, MA
N-Acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine-D3	CYHA-D ₃	Toronto Research Chemicals, Toronto, Canada
N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine-13C3-D3	IPM3- ¹³ C ₃ -D ₃	IsoSciences, Ambler, PA

I. Solvents

LCMS grade solvents (e.g., water, acetone, methanol, isopropyl alcohol) are used to prepare mobile phases. Every run contains a water sample with 15 mM ammonium acetate, referred to as a double blank, to monitor the quality of the mobile phase and to detect any contamination.

II. Calibration and control materials

Currently used calibration and quality control materials, including native compounds and isotopically labeled internal standards, are at least 95% pure. Isotopically labeled compounds are checked for any spectral overlap with corresponding native analogs before use. Each run contains a blank sample (internal standard and 15 mM ammonium acetate) to monitor any changes in quality.

B. Reagent preparation

I. 15mM ammonium acetate

15 mM ammonium acetate in LCMS-grade water is used as Solvent A (mobile phase of UPLC), to prepare working calibration standards, and to dilute urine and quality control (QC) samples.

II. Standards solutions preparation

a) Native analytical standards

i. Individual primary stock solutions

The primary stock solutions are prepared by dissolving the neat compounds individually in appropriate solvents (Table 3) being sure to account for any salt components in the calculations as noted by the Certificate of Analysis from the manufacturer. For hygroscopic compounds (i.e. 2DCV, AAMA, AMCA, BPMA, CYHA, DHBM, GAMA, HPM2, HPMM, MBH3, PHEM), special procedures, such as drying the neat material in a desiccator before use, are to be taken. The prepared stocks are stored at -20 °C for future use.

Analyte; Internal standard	Solvent used to prepare primary stock		
AAMA; AAMA-D ₄	water		
AMCA; AMCA- ¹³ C ₃ - ¹⁵ N	water		
ATCA; ATCA-D ₃	water		
BMA; BMA- $^{13}C_6$	water		
BPMA; BPMA-D ₇	methanol:water (1:1)		
CEMA; CEMA- ¹³ C ₃	water		
CYMA; CYMA-D ₃	water		
DHBM; DHBM- ¹³ C ₄	water		
GAMA; GAMA-D ₃	water		
HEMA; HEMA-D ₄	water		
HPMA; HPMA- ¹³ C ₄ - ¹⁵ N	water		
HPM2; HPM2-D ₃	water		
HPMM; HPMM- ¹³ C ₄ - ¹⁵ N	water		
MADA; MADA- ¹³ C ₈	methanol:water (1:1)		
2MHA; 2MHA- ¹³ C ₆	methanol:water (1:1)		
3MHA; 3MHA-D ₇	methanol:water (1:1)		
4MHA; 4MHA- ¹³ C ₂ - ¹⁵ N	methanol:water (1:1)		
MHB3; MHB3-D ₃	methanol:water (1:1)		
PHGA; PHGA- ¹³ C ₈	water		
PHEM; PHEM- ¹³ C ₆	methanol		
TTCA; TTCA- ¹³ C ₃	water		
CYHA; CYHA-D ₃	methanol:water (1:1)		
IPM3; IPM3-D ₃ - ¹³ C ₃	methanol:water (1:1)		

Table 3. Solvent used to prepare initial stock solution

ii. Mixed intermediate stock solutions

Intermediate stock solutions are prepared for at least five levels and concentrations are 10 times higher than the corresponding working standards. A representative sample composition is given in **Table 4**. To prepare each level, the appropriate volume of each analyte is pipetted from the individual primary stock solutions into a volumetric flask and the mixture is diluted with LCMS-grade water to attain the required final concentration. The solutions are aliquoted in vials and are stored at -70°C. Each set is thawed once, and the remaining solution is discarded after use.

Analyte	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9
СҮМА	0.50	0.75	1.58	5.00	15.8	50.0	158	500	1581
HPMM	3.04	4.56	9.61	30.40	96.1	304.0	961	3040	9613
MHB3	0.55	0.83	1.74	5.50	17.4	55.0	174	550	1739
HPM2	2.64	3.96	8.35	26.42	83.5	264.2	835	2642	8355
3MHA	3.10	4.65	9.80	31.00	98.0	310.0	980	3100	
4MHA	3.10	4.65	9.80	31.00	98.0	310.0	980	3100	
AAMA	1.10	1.65	3.48	11.00	34.8	110.0	348	1100	
BMA	0.44	0.66	1.39	4.40	13.9	44.0	139	440	
HPMA	12.96	19.44	40.98	129.60	409.8	1296.0	4098	12960	
DHBM	4.00	6.00	12.65	40.00	126.5	400.0	1265	4000	
2MHA	3.10	4.65	9.80	31.00	98.0	310.0	980	3100	
AMCA	3.60	5.40	11.38	36.00	113.8	360.0	1138	3600	
BPMA	0.77	1.15	2.43	7.68	24.3	76.8	243	768	
PHGA	10.07	15.11	31.84	100.70	318.4	1007.0	3184		
CEMA	6.00	9.00	18.97	60.00	189.7	600.0	1897		
GAMA	5.91	8.86	18.67	59.05	186.7	590.5	1867		
HEMA	0.38	0.57	1.19	3.77	11.9	37.7	119		
MADA	12.00	18.00	37.95	120.00	379.5	1200.0	3795		
ATCA	8.90	13.35	28.14	89.00	281.4	890.0	2814		
PHEM	0.50	0.75	1.58	5.00	15.8	50.0	158		
TTCA	11.17	16.75	35.31	111.67	353	1117	3531		
IPM3	0.53	0.80	1.69	5.33	16.9	53.3	169	533	1685
CYHA	2.60	3.90	8.22	26.00	82	260	822	2600	

Table 4. A sample composition of mixed intermediate stock solutions (ng/mL)

iii. Working mixed standard solutions

Each level of intermediate stock is diluted 10 times with 15 mM ammonium acetate solution to prepare the corresponding working standard level. The preparation of the working standard solutions should follow certain criteria: (a) concentration at each level should be separated from the next level by a maximum factor of $\sqrt{10}$, (b) the lowest concentration is to be equal to or less than the LOD, and (c) the highest standard should ideally cover the 99th percentile of the expected population level, whenever that information is available.

b) Isotopically labeled internal standard solutions

i. Individual primary stock solutions

The appropriate volume of each IS is pipetted from the individual primary stock solutions into a volumetric flask and the mixture is diluted with LCMS-grade water or methanol to attain the required final concentration. These solutions are aliquoted in vials and are stored at -70°C. Each vial is thawed once, if applicable, and the remaining solution is discarded after use.

ii. Mixed intermediate stock solutions

The appropriate volume of each IS is pipetted from the individual primary stock solutions into a volumetric flask and the mixture is diluted with LCMS-grade water or methanol to attain the required final concentration. These solutions are aliquoted in vials and are stored at -70°C. Each vial is thawed once, if applicable, and the remaining solution is discarded after use.

iii. Working mixed internal standard solutions

The intermediate stock is diluted 20 times with 15 mM ammonium acetate solution to prepare the working internal standard (IS). The final concentration of each IS is suggested to be between standard (native analyte) level 3-5.

III. Preparation of quality control material

a) Quality control pools

Quality Control (QC) materials are prepared at two concentration levels, QC low (Q_L) and QC high (Q_H), in urine. Q_L is suggested to be between standard levels 3 and 5, and Q_H between 5 and 7. The urine matrix can have high backgrounds for certain analytes. In those cases, the amount of analyte to be spiked should be adjusted to meet the target concentration. Aliquots of Q_L and Q_H are stored separately in cryovials at -70°C until use. Each vial is thawed once, and the remaining solution is discarded after use. At least 20 separate QC samples are analyzed using different sample runs and instruments to characterize the QCs and to determine the mean values and coefficient of variation (CV) for individual analytes.

b) Proficiency testing samples

Proficiency testing materials at four (native analyte concentration) levels are prepared in a manner similar to the mixed intermediate stocks using individual primary stock solutions separate from those used to make standard solutions. Also, Proficiency testing materials are prepared by an external source other than that used to make standard solutions whenever available. Aliquots are stored in cryovials; at -70°C until use. Proficiency testing samples are run at least two times a year. A proficiency testing coordinator, independent from the sample analysis team, blind-codes the PT stock vials and verifies accuracy of quantified results of four PT samples at each of the four concentration levels and one sample at any of the four different levels.

C. Instrumentation and operation

I. Liquid chromatography (LC)

Chromatographic separation of the analytes is achieved with a UPLC system (e.g., Waters Acquity) fitted with a reversed phase C18 column (e.g., Acquity UPLC[®] HSS T3). A guard column is mounted upstream to protect the analytical column from impurities. The column and the sample manager are set at optimum temperatures, for example, 40°C and 25°C respectively.

The mobile phase consists of 15 mM ammonium acetate (Solvent A) and acetonitrile (Solvent B). The separation conditions are optimized to obtain good resolution among VOC metabolites, a representative example is given in **Table 5**. Before each run, the column is equilibrated with the initial mobile phase composition for at least 10 column volumes. After each sample injection, the needle is first cleaned with a strong wash and subsequently with a weak wash (**Table 5**). At the end of each run, the column is washed with an aqueous solution (e.g., A:B = 97:3) followed by 100% acetonitrile and is stored in acetonitrile (shutdown method).

Parameter	Details
Weak Wash	LCMS grade water
Strong Wash	 25% LCMS grade water 25% Optima LCMS grade acetonitrile 25% Optima LCMS grade methanol 25% Optima LCMS grade isopropyl alcohol
Gradient:	
Time, flow, Solvent A: Solvent B	initial, 250 µL/min, 97%: 3%
	2 min, 250 µL/min, 95%: 5%
	3 min, 300 µL/min, 90%:10%
	5 min, 300 µL/min, 70%: 30%
	6.5 min, 300 µL/min, 60%:40%
	7 min, 300 µL/min, 85%:15%
	7.5 min, 300 μL/min, 90%:10%
	8 min, 300 μL/min, 97%:3%
	9 min, 300 µL/min, 97%:3%

Table 5.	Chromatography parameters for the UPLC	
I abit J.	Sinomatography parameters for the Of LC	

II. Mass spectrometer (MS)

A triple quadrupole mass spectrometer (e.g., AB Sciex Triple Quad 5500) with an electrospray ion source is used for the detection of urinary VOC metabolites. The mass spectrometer is operated under Scheduled Multiple Reaction Monitoring (MRM) mode. The instrument parameters are optimized to obtain the maximum signal intensity, dynamic range, and signal to noise (S/N) ratio. Compounds (native analytes and internal standards) are optimized individually to select transitions and associated mass spectrometric parameters (e.g., declustering potential, collision energy, etc.) for maximum selectivity and signal intensity. These parameters should be re-optimized when transferring the method to a new instrument. Ideally, the m/z value for the precursor ion should match between the quantitation and the confirmation ions whenever possible. Similarly, the internal standard transition should correspond to the quantitation ion transition to avoid any quantitation bias. In some instances (e.g., BMA), alternate transitions have been chosen because of the presence of co-eluents or spectral overlap. **Table 6** lists suggested transitions for the VOC metabolites measured by this method.

Analyta	Tran	sition	Internal standard	T	
Analyte	Quan. ion ^a	Conf. ion ^b	Internal standard	Transition	
AAMA	233/104	233/58	AAMA-D ₄	237/108	
AMCA	219/162	219/84	AMCA- ¹⁵ N- ¹³ C ₃	223/166	
ATCA	145/67	145/58	ATCA-D ₃	148/70	
BMA	252/123	253/124	BMA- ¹³ C ₆	258/84	
BPMA	204/84	204/75	BPMA-D ₇	211/84	
CEMA	234/162	234/105	CEMA- ¹³ C ₃	237/162	
СҮНА	231/84	231/102	CYHA-D ₃	234/84	
СҮМА	215/162	215/86	CYMA-D ₃	218/165	
DHBM	250/121	250/75	DHBM- ¹³ C ₄	254/125	
GAMA	249/120	249/128	GAMA-D ₃	252/120	
HEMA	206/77	206/75	HEMA-D ₄	210/81	
HPMA	220/91	220/89	HPMA- ¹³ C ₄ - ¹⁵ N	225/91	
HPM2	220/91	221/91	HPM2-D ₃	223/91	
HPMM	234/105	235/105	HPMM- ¹³ C ₄ - ¹⁵ N	239/105	
IPM3	246/117	246/87	IPM3-D ₃ - ¹³ C ₃	252/123	
MADA	151/107	151/77	MADA- ¹³ C ₈	159/114	
2MHA	192/148	192/91	2MHA- ¹³ C ₆	198/154	
34MH	192/148	192/91	4MHA- ¹³ C ₂ - ¹⁵ N	195/150	
MHB3	232/103	233/103	MHB3-D ₃	235/103	
PHGA	149/77	149/105	PHGA- ¹³ C ₈	157/83	
PHEM	282/153	282/123	PHEM- ¹³ C ₆	288/159	
TTCA	162/58	162/118	TTCA- ¹³ C ₃	165/58	

Table 6. Example of MRM transitions for VOC metabolites

^aQuantitation ion. ^bConfirmation ion.

Note: Analytes with same SMRM transitions (e.g., 2MHA and 34MH) elute at different retention times.

Mass spectrometers are tuned following any repair or performance maintenance. The curtain plate is cleaned as needed to remove any deposition from previous runs. The performance of the instrument is also checked before every scheduled run by injecting a low standard (e.g., std 2) three times and by calculating the S/N ratio, which should be at least 10. Additionally, the overall intensity and resolution between peaks is evaluated.

III. Robotic liquid handling system

All calibration standards, QCs, and urine samples are aliquoted, prepared, and mixed by a robotic liquid handling system such as Hamilton Microlab Star. **Table 7** exemplifies a sample preparation protocol. Preventive maintenance of liquid handling system is performed annually.

Sample	Vol. of sample (µL)	Vol. of IS (µL)	Vol. of 15 mM ammonium acetate (µL)
Double blank	0	0	500
Blank	0	25	475
Calibration standard ^a	50	25	425
Calibration standard ^b	50 + 50	25	375
Quality control	50	25	425
Urine	50	25	425
Proficiency testing	50	25	425

Table 7. An example of a sample preparation protoco	ol using robotic liquid handler
---	---------------------------------

^aUsing one source vial of all calibration material. ^bUsing two source vials of calibration material (ie. reactives and nonreactives).

7. Calibration and calibration verification

Different urine samples contain varying background levels of VOC metabolites and hence urine cannot be used as a reliable matrix to prepare calibration standards. Instead, 15 mM ammonium acetate solution is used for this purpose. Matrix validation experiments were performed to verify that the calibration curves in urine and in ammonium acetate had the same slope (Appendix B, **Table B1**) [30].

A. Calibration curve

At least one set of calibrators is used for the quantitation of analytes in all urine samples from a batch. The calibration curve for each analyte is constructed from the response ratio, which is the area ratio of the unlabeled analyte to its corresponding internal standard. The slope and intercept of curves are determined by least squares regression of 1/x weighted data. Calibration curves should be composed of at least five standard levels that span the range of all detectable unknown samples and should achieve an R-squared coefficient of at least 0.98.

B. Calibration verification

Calibration accuracy is tested with each run by analysis of blank (15 mM ammonium acetate and IS) and quality control samples. A full set of calibrators is analyzed with each batch of urine samples. Absolute accuracy is verified by proficiency testing at least twice a year.

8. Procedure Operation Instructions; Calculations; Interpretation of Results

A. Sample preparation

An analytical run consists of double blank (15 mM ammonium acetate), blank (15 mM ammonium acetate and internal standard), calibration standards, low level QC, high level QC, and unknown urine samples. Prior to analysis, all samples including urine, standards, IS, and QCs are completely thawed using a thawing station for approximately 20 minutes. The thawing time varies depending on the room temperature. The urine samples are mixed thoroughly in a rugged rotator for 15 minutes at setting 60. The mixing step can go up to an hour without any significant changes in measured analyte concentrations. A robotic liquid handling system prepares the samples following the protocol as shown in **Table 7**. Briefly, urine samples and QCs are diluted 1:10 with 15 mM ammonium acetate. Each sample is immediately spiked with the internal standard solution and mixed properly.

B. Data analysis

Unknown samples are quantified by the ratio of the analyte peak area to the internal standard peak area. Use of internal standard compensates for analyte-dependent selectivity biases, such as matrix effects associated with the ionization process, and confirms the presence of a native target when there is any shift in chromatographic retention time. Urine and QC sample concentrations are multiplied by the appropriate dilution factor.

C. Data processing

I. peak integration

Each peak is visually inspected, and peak integration is corrected if the software erroneously integrates a peak. For each analyte, the confirmation ion signal is quantified above a certain concentration threshold.

II. Excluding calibrators

A particular calibrator is only excluded if it significantly affects (>10% change) the detectable results in QC and the cause behind the anomaly is identified. Scenarios that might only affect a single standard include no or low addition of native analyte or internal standard and missed injection because of instrument failure. However, the highest standard level can be excluded if the calibration curve is nonlinear over this region because all QCs fall below standard level 7. In that case, analysis of unknown samples which exceed the calibration range are diluted and repeated.

III. Excluding sample data

Absolute internal standard response is evaluated for consistency among the standards, blanks, QCs, and urine samples. Sample data is excluded if low or excess IS is added to the urine sample, which is identified by the unusually high or low absolute IS response compared to similar sample types. Poorly resolved co-eluents can cause an unusually high internal standard response, which also warrants elimination of the sample.

9. Reportable range of results

A. Reportable limits

Only data above or at LOD are reported, unless <LOD results are requested. The upper reportable limit corresponds to the concentration of the highest standard times additional dilutions. If the analyte level exceeds the upper calibration range, the sample is repeated by diluting it with 15 mM ammonium acetate such that the analyte concentration falls within the standard curve.

B. Limit of detection

Refer to the DLS PPM for calculation of LOD.

C. Accuracy

The accuracy of the assay is established by blind analysis of Proficiency Testing (PT) samples and whenever necessary, by spike recovery experiment in which urine is spiked at three different concentration levels.

D. Precision

The precision of the method is reflected in the variance of quality control samples analyzed over time. The coefficient of variation (CV) of the method was determined based on 20 independent analyses of the QC samples.

E. Analytical specificity

LC-MS/MS is a highly selective analytical method for quantifying the target analytes in complex aqueous matrices. Reversed phase liquid chromatography reproducibly resolves the target analytes, even in the most concentrated urine samples. Analytical specificity is established by comparing the retention times of an analyte relative to its internal standard. Tandem mass spectrometry provides a further degree of selectivity, by filtering out all ions except a specific transition of precursor-to-product ions for each analyte. Additionally, qualifier ratios, the area ratios of quantitation ion to the confirmation ion, are determined for the standards and QC samples. The average value of this ratio is typically within $\pm 25\%$.

10. Quality Assessment and Proficiency Testing

A. Quality assessment

Quality assessment procedures follow standard practices [32]. Daily experimental checks are made on the stability of the analytical system. Blanks, standards, and QC materials are added to each run sequence. A blank is analyzed at the beginning of each run to check the system for possible contamination. Relative retention times are examined for the internal standard to ensure the choice of the correct chromatographic peak. A calibration curve is developed for the batch using a complete set of calibration standards. The calibration curve must have a coefficient of determination, R-squared coefficient of at least 0.98. The results from the analysis of QC materials obtained using these calibration curves are compared using the acceptance criteria given below to assure precision of the analysis.

B. Quality control procedures

I. Establishing QC limits

Two different pools of quality control material are used, one at a low and the other at a high concentration. Quality control limits are established by characterizing assay precision with 20 distinct analyses of each QC pool. Different variables are included in the characterization analyses (e.g., different analysts, columns, instruments, etc.) to capture realistic assay variation over time. One instrument characterizes no more than two samples from one pool per day. The mean, standard deviation, coefficient of variation, and confidence limits are calculated from this QC characterization data set. Individual quality control charts for the characterization runs are created and examined. Quality control limits are used to document assay precision and accuracy on a daily basis. Limits are based on statistical calculation accounting for two QCs analyzed in each analytical run.

II. Quality control evaluation

After the completion of a run, the calculated results from the analysis of quality control samples are compared to the established quality control limits to determine if the run is "in control". The quality control rules apply to the average of the beginning and ending analyses of each of the QC pools. The quality control results are evaluated according to the DLS Policies and

Procedures Manual. If a QC result is declared "out of control", the results for all patient samples analyzed during that run are invalid for reporting.

C. Proficiency testing

I. Scope of PT

The proficiency testing (PT) scheme for this method is administered by an in-house proficiency testing coordinator. Externally prepared aqueous proficiency testing materials are blind-coded by the in-house PT coordinator. The samples are analyzed and the results are evaluated by the in-house PT coordinator.

II. Frequency of PT

Five samples of unknown PT concentrations are analyzed at least twice a year using the same method described for unknown samples.

III. Documentation of PT

Analytical PT results are reviewed by the analyst and laboratory supervisor and submitted to the in-house PT coordinator electronically. The PT results are evaluated by the PT coordinator; if the value falls between 75% and 125% of the expected value, then the analysis passes the proficiency test. A summary report of the PT evaluation is maintained by the laboratory quality control officer. If the assay fails proficiency testing, then the sample preparation and instrumentation are thoroughly examined to identify and correct the source of assay error. Analyte data for unknown specimens may only be reported if that analyte successfully passes proficiency testing.

11. Remedial Action if Calibration or QC Systems Fail to Meet Acceptable Criteria

If an analyte result for a quality control material falls outside the acceptable range, then it fails the QC criteria; and following steps should be taken.

- **A.** Calibration standards: If R-squared coefficient is less than 0.98 for the fitted curve, then the individual calibration standards are evaluated for any obvious error (e.g., missed IS or native analyte or injection, improper peak integration, etc.). If not, then a new calibration set (working standard) is prepared and acquisition and analysis of the entire batch, including QCs & unknown samples, is repeated.
- **B.** Quality control material: If the QC material is the suspected cause of the error, then a fresh QC sample is prepared and analyzed.
- **C. Internal standard response:** If no missed IS aliquoting or missed injection is detected, then the absolute IS response should be compared to earlier runs. If the observed change exceeds 25%, then a new IS working solution is prepared and the run is repeated.
- **D.** Contamination: Blank (internal standard and ammonium acetate) and double blank (ammonium acetate only) samples should be investigated for any contamination, e.g, presence of a ghost co-eluate peak or high background of unlabeled analyte in blank. The

mobile phase is to be prepared fresh and the LC system needs to be cleaned prior to any measurement.

E. Intermediate stock solution: Occasionally the composition of the intermediate stock solution for native analytes or internal standard could be erroneous. In that case, new intermediate stock solutions followed by the working standards should be prepared and used for further measurements.

If these steps do not result in correction of the "out of control" values for QC materials, the supervisor should be consulted for other appropriate corrective actions. Analytical results are not reported for runs that are out of statistical control.

12. Limitations of Method, Interfering Substances and Conditions

The described method is highly selective. Because of excellent chromatographic and mass spectrometric resolution, we typically do not find other interfering substances that have similar chromatographic and mass spectrometric characteristics. However, in some urine samples, chromatography can be distorted by unknown co-eluates; usually, this problem is resolved by further diluting the sample and re-analyzing it. In those situations, where a co-eluate cannot be resolved from the target analyte, the data are not reported.

13. Reference Ranges (Normal Values)

Reference ranges for smokers and non-smokers are presented in Table 8.

Analyte Code	Analytical limit of	Ra	nge	Ref.
(other Acronym)	detection (LOD)	Non-smokers	Smoker	
AAMA	2.5	12.7-171 μg/L	30.3-447 μg/L	[33]
		9.8-171 µg/g creatinine	35.1-401 µg/g creatinine	
AMCA (AMCC)	5	38.9-498 μg/L	122-1453 μg/L	[33]
		47.3- 449 μg/g creatinine	196-1153 µg/g creatinine	
ATCA	25	$85\pm47~ng/mL$	$233\pm237~ng/mL$	[34]
BMA	0.02	2.4-81.4 µg/g creatinine	1.7-31.2 µg/g creatinine	[35]
CEMA	0.15	ND-94 µg/L	27-744 μg/L	[36]
		ND-158 µg/g creatinine	ND-744 μ g/g creatinine	
CYMA*	0.5	0.14-1.83 pmol/mL	390-1257 pmol/mL	[38]
DHBM (DHBMA)	0.14	ND-329 µg/L	113-1830 μg/L	[36]
		ND-582 µg/g creatinine	166-1092 µg/g creatinine	
HEMA	0.03	ND-1.44 μg/L	ND-20.8 µg/L	[36]
		ND-1.05 µg/g creatinine	ND-16 µg/g creatinine	
HPMA	0.2	ND-128 µg/L	80.9-4030 μg/L	[36]
		ND-245 µg/g creatinine	75-3678 μg/g creatinine	
HPM2 (2HPMA)	5	<5-49.3 µg/L	<5- 252 μg/L	[33]
		<5-73.6 µg/g creatinine	<5-206 µg/g creatinine	
HPMM (HPMMA)	28	192-1740 µg/24hr	815-5457 µg/24hr	[16]
PMA	0.01	ND-0.26 µg/L	ND-37.7 μg/L	[36]
		ND-0.45 µg/g creatinine	ND-18.4 µg/g creatinine	

 Table 8. VOC metabolites in urine collected from non-smokers and smokers.

14. Critical Call Results ("Panic Values")

Mercapturic acids are specific biomarkers of VOC exposure. High levels of urinary VOC metabolites could indicate excessive exposure to VOCs. However, the stoichiometric relationship of VOCs and many of the urinary VOC metabolites has not been established. Therefore, there are no critical call values for VOC metabolites at this time. The biological exposure indices (BEI) reported by ACGIH [38] for some of the VOC metabolites in this method are given in **Table 9** as the maximum values allowable in urine samples collected from workers.

VOC Metabolite	BEI	Parent Compound
AMCA	15 mg/L	N, N dimethylformamide
DHBM	2.5 mg/L	1,3-butadiene
2MHA+3MHA+4MHA	1.5 g/g creatinine	<i>o-, m-, p-</i> xylenes
MADA + PHGA	400 mg/g creatinine	styrene
TTCA	0.5 mg/g creatinine	carbon disulfide

Table 9. Biological exposure indices.

15. Specimen Storage and Handling During Testing

Specimens must be stored at \leq -20°C until analysis; however, they may be kept at ambient temperature during analysis.

16. Alternate Methods for Performing Test or Storing Specimens if Test System Fails

Alternate methods have not been evaluated for measuring VOC metabolites in urine.

17. Test Result Reporting System; Protocol for Reporting Critical Calls (if Applicable)

Results are reported to three significant figures based on assay sensitivity calculations. Study subject data is reported in both concentration units (ng/mL) and as adjusted values based on creatinine excretion (μ g/g creatinine).

Once the validity of the data is established by the QC/QA system outlined above, results are verified by a DLS statistician, and the data is reported in both hard and electronic forms. This data, a cover letter, and a table of method specifications and reference range values will then be routed through the appropriate channels for approval (i.e. supervisor, branch chief, division director). After approval at the division level, the report will be sent to the contact person who requested the analyses.

18. Transfer or Referral of Specimens; Procedures for Specimen Accountability and Tracking

If greater than 0.25 mL of sample remains following successful completion of analysis, this material should be returned to storage at \leq -70°C in case further analysis is required. These samples should be retained until valid results have been obtained, reported, and sufficient time has passed for review of the results.

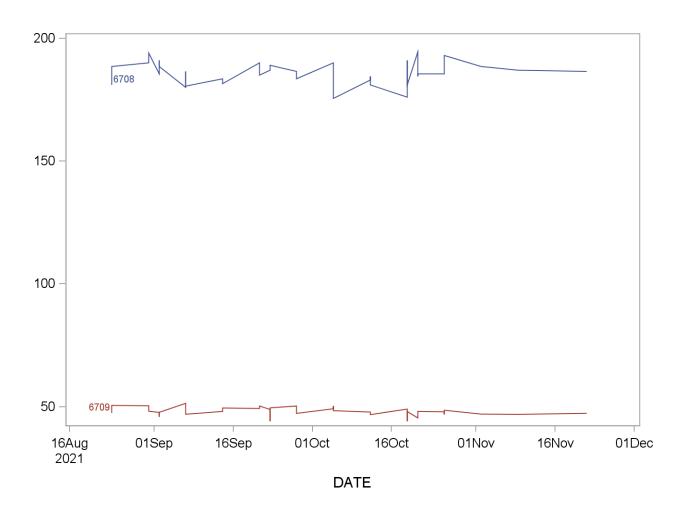
Standard record keeping (e.g., database, notebooks, and data files) is used to track specimens. Records are maintained for 3 years, including related QA/QC data. Additionally, duplicate records will be kept off-site in electronic format. Study subject confidentiality is protected by providing personal identifiers only to the medical officer.

19. Method Performance Documentation

Method performance documentation for this method including accuracy, precision, sensitivity, specificity, and stability is provided in Appendix C of this method documentation. The signatures of the branch chief and director of the Division of Laboratory Sciences on the first page of this procedure denote that the method performance is fit for the intended use of the method.

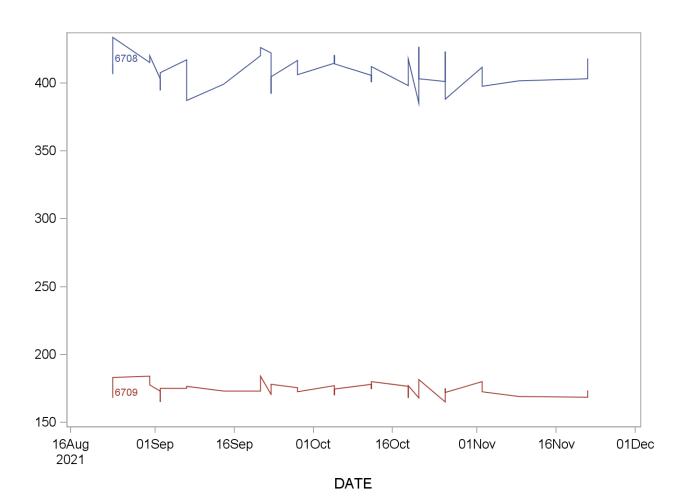
Volatile Organic Compounds (VOCs) Metabolites NHANES 2017-2018

20. Summary Statistics and QC Graphs

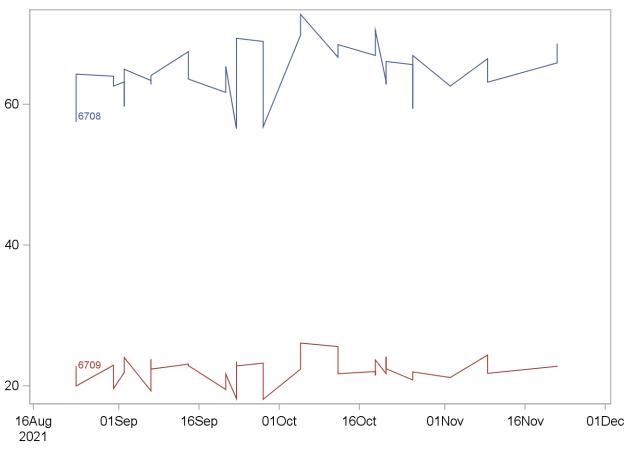

See next pages.

Use of trade names is for identification only and does not imply endorsement by the public Health Services or the U. S. Department of Health and Human Services.

--

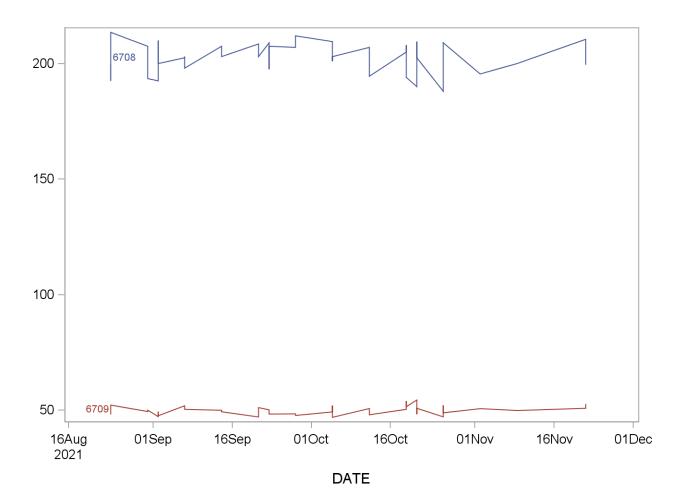

2017-2018 Summary Statistics and QC Chart URX2MH (2-methylhippuric acid (ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	185.9868	4.4804	2.4
6709	38	24AUG21	22NOV21	47.9447	1.6421	3.4

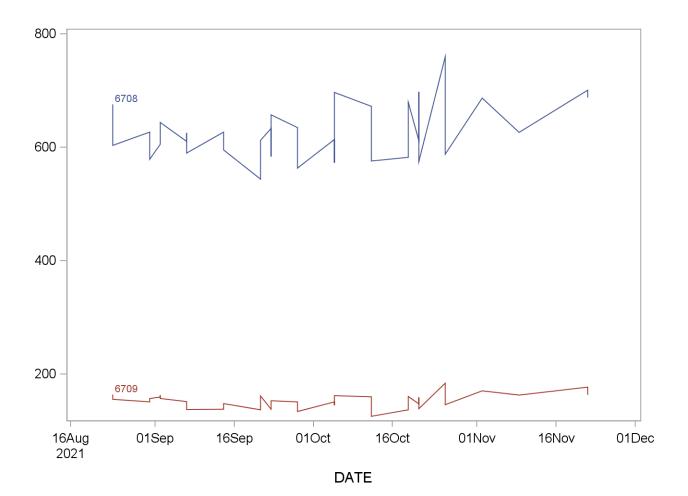

2017-2018 Summary Statistics and QC Chart URX34M (3-methipurc acd & 4-methipurc acd(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	39	24AUG21	22NOV21	408.5385	11.5573	2.8
6709	39	24AUG21	22NOV21	174.3718	4.7845	2.7

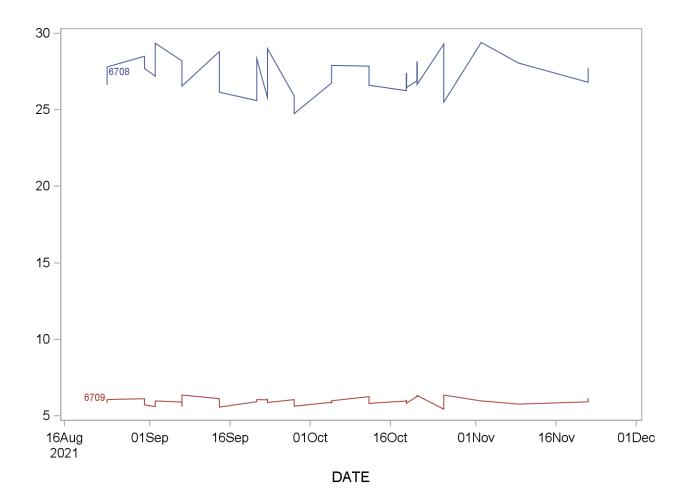
2017-2018 Summary Statistics and QC Chart URXAAM (N-ace-S-(2-carbamoylethyl)-L-cys(ng/mL))


Lot	n	Start Date	End Date			Coefficient of Variation
6708	40	24AUG21	22NOV21	64.7650	3.6971	5.7
6709	40	24AUG21	22NOV21	22.1738	1.7439	7.9

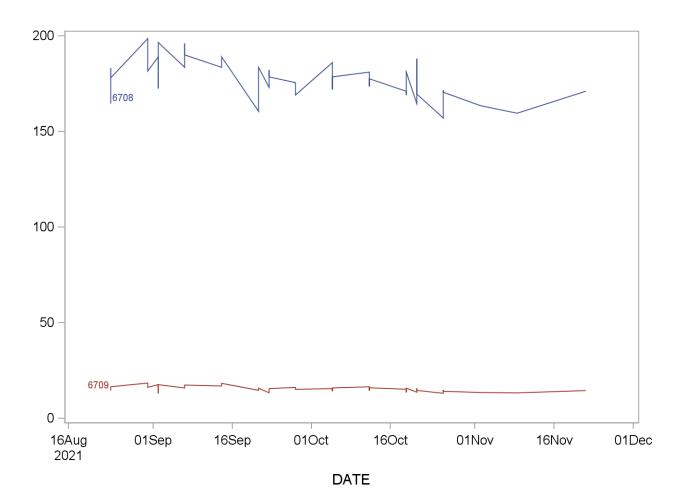
DATE


2017-2018 Summary Statistics and QC Chart URXAMC (N-ace-S-(N-methIcarbamoyI)-L-cys(ng/mL))

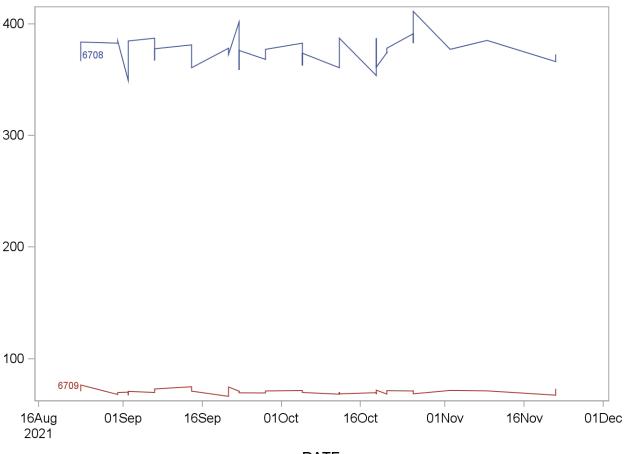
Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	202.308	6.605	3.3
6709	39	24AUG21	22NOV21	49.850	1.870	3.8


2017-2018 Summary Statistics and QC Chart URXATC (2-amnothiazoIne-4-carbxylic acid(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	39	24AUG21	22NOV21	626.7051	46.6931	7.5
6709	39	24AUG21	22NOV21	151.6538	12.3630	8.2

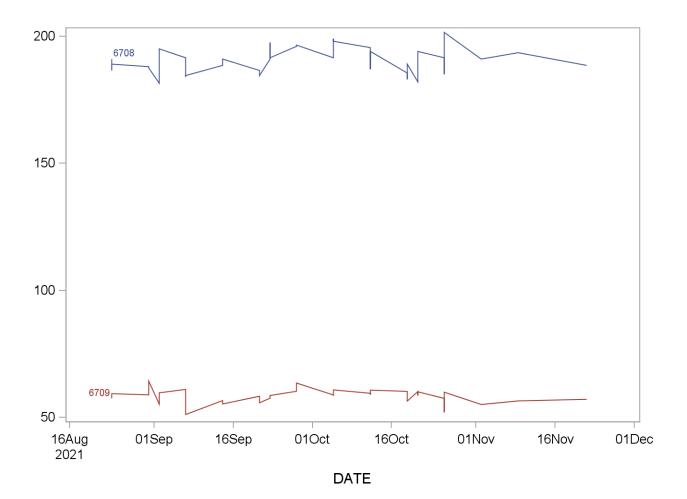

2017-2018 Summary Statistics and QC Chart URXBMA (N-acetyl-S-(benzyl)-L-cysteine(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	39	24AUG21	22NOV21	27.3500	1.1621	4.2
6709	39	24AUG21	22NOV21	5.9572	0.2243	3.8

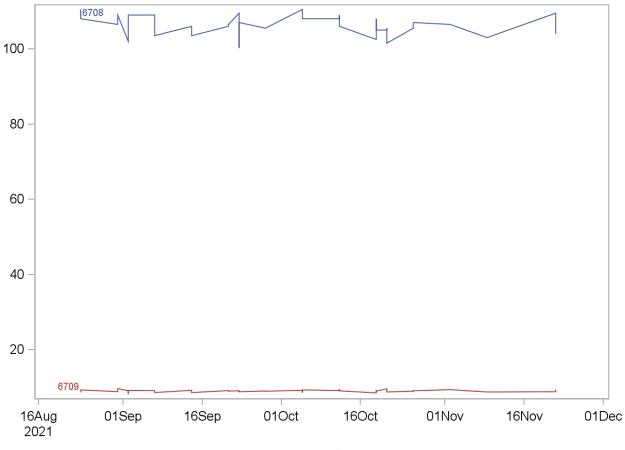

2017-2018 Summary Statistics and QC Chart URXBPM (N-acetyl-S-(n-propyl)-L-cysteine(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	177.1579	10.3781	5.9
6709	38	24AUG21	22NOV21	15.4053	1.4928	9.7

2017-2018 Summary Statistics and QC Chart URXCEM (N-acetyl-S-(2-carbxyethyl)-L-cys(ng/mL))

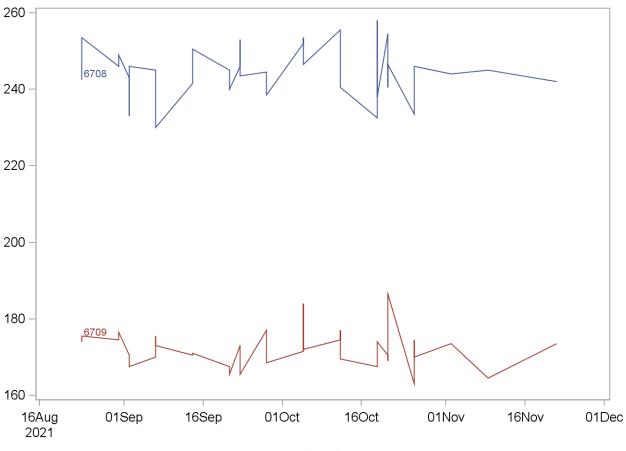

Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	375.9487	12.3180	3.3
6709	39	24AUG21	22NOV21	70.4205	2.0965	3.0

DATE


2017-2018 Summary Statistics and QC Chart URXCYHA (CYHA cysteine (ng/mL))

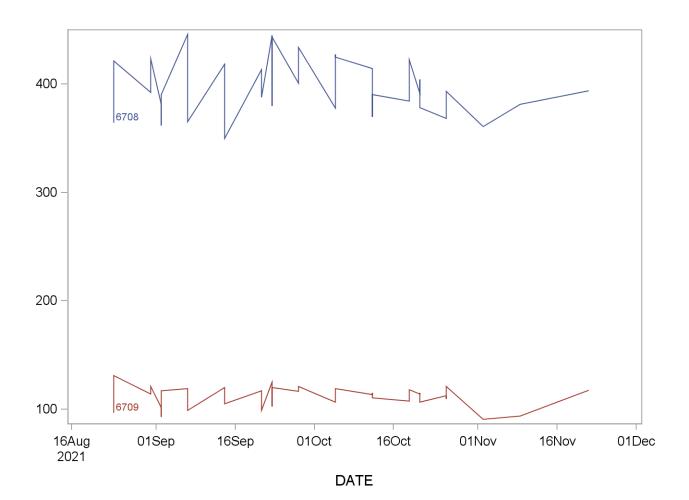
Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	38	24AUG21	22NOV21	190.2763	4.9288	2.6
6709	38	24AUG21	22NOV21	58.3289	2.6049	4.5

2017-2018 Summary Statistics and QC Chart URXCYM (N-acetyl-S-(2-cyanoethyl)-L-cyst(ng/mL))

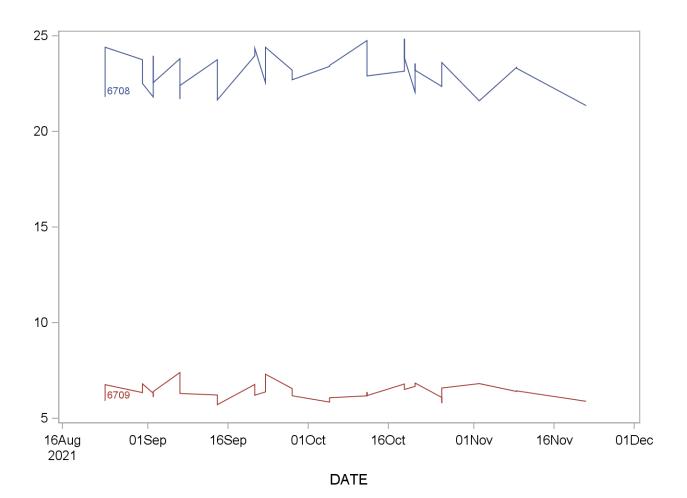

Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	106.3526	2.5724	2.4
6709	39	24AUG21	22NOV21	9.0317	0.3154	3.5

DATE

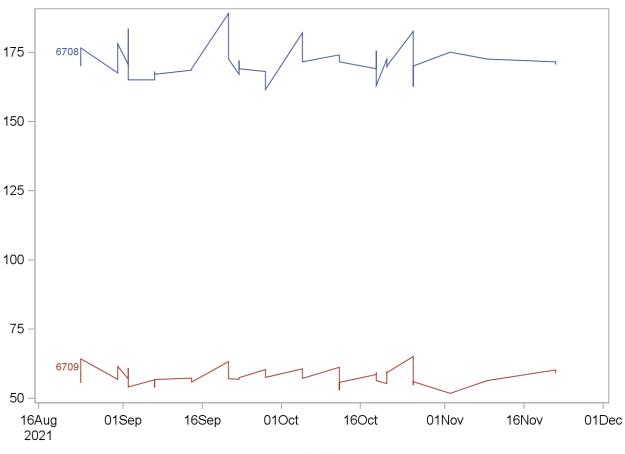
2017-2018 Summary Statistics and QC Chart URXDHB (N-ace-S- (3,4-Dihidxybutl)-L-cys(ng/mL))


Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	244.7105	6.4751	2.6
6709	38	24AUG21	22NOV21	171.9868	4.7782	2.8

DATE

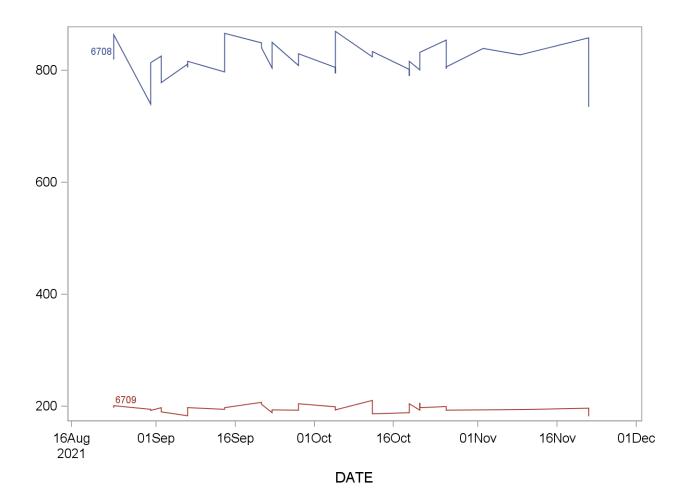

2017-2018 Summary Statistics and QC Chart URXGAM (N-ac-S-(2-carbmo-2-hydxel)-L-cys(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	395.7500	25.4640	6.4
6709	38	24AUG21	22NOV21	111.7895	9.4027	8.4

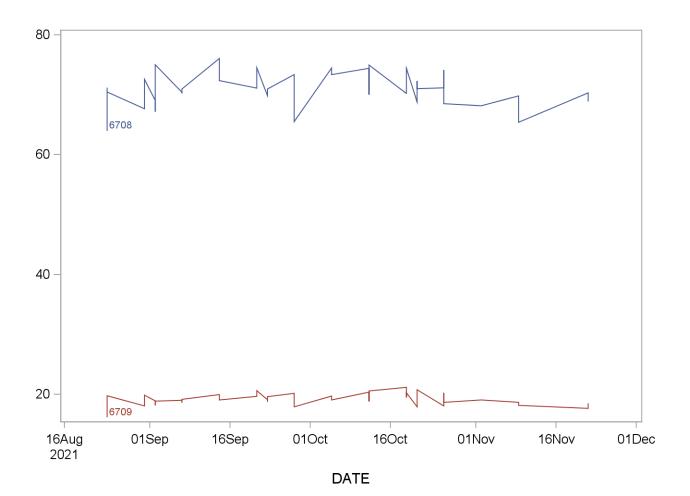

2017-2018 Summary Statistics and QC Chart URXHEM (N-ace-S-(2-hydroxyethyl)-L-cys(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	23.1158	0.9299	4.0
6709	38	24AUG21	22NOV21	6.4293	0.3852	6.0

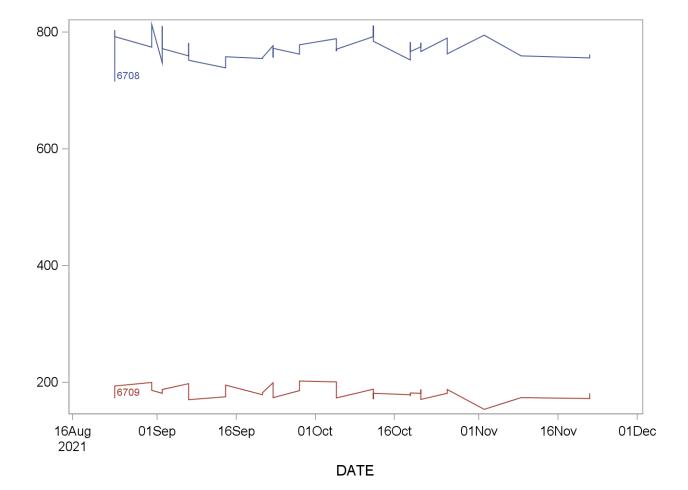
2017-2018 Summary Statistics and QC Chart URXHP2 (N-ace-S-(2-hydroxypropyl)-L-cys(ng/mL))


Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	171.5128	5.7382	3.3
6709	39	24AUG21	22NOV21	57.9192	2.9235	5.0

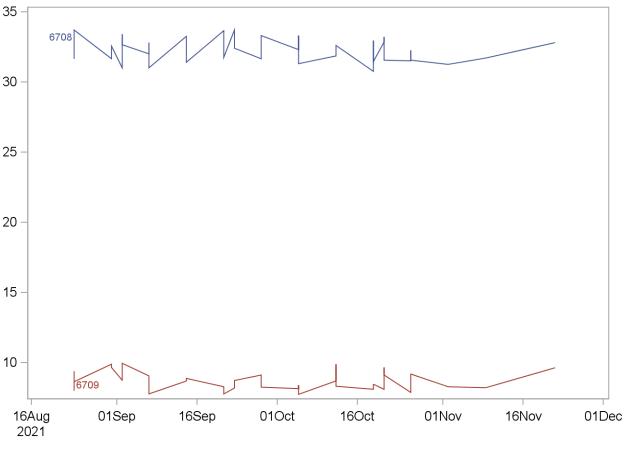
DATE


2017-2018 Summary Statistics and QC Chart URXHPM (N-ace-S-(3-hydroxypropyl)-L-cys(ng/mL))

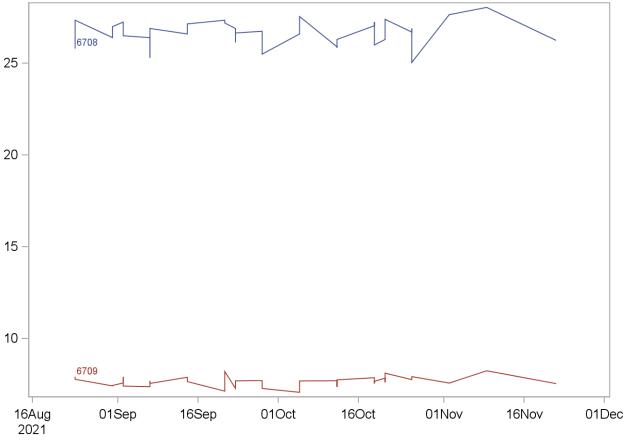
Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	817.4744	29.2554	3.6
6709	39	24AUG21	22NOV21	195.1923	6.1533	3.2


2017-2018 Summary Statistics and QC Chart					
URXIPM3 (IPM3 cysteine (ng/mL))					

Lot	n	Start Date	End Date			Coefficient of Variation
6708	39	24AUG21	22NOV21	70.8564	2.8193	4.0
6709	39	24AUG21	22NOV21	19.1321	1.0372	5.4

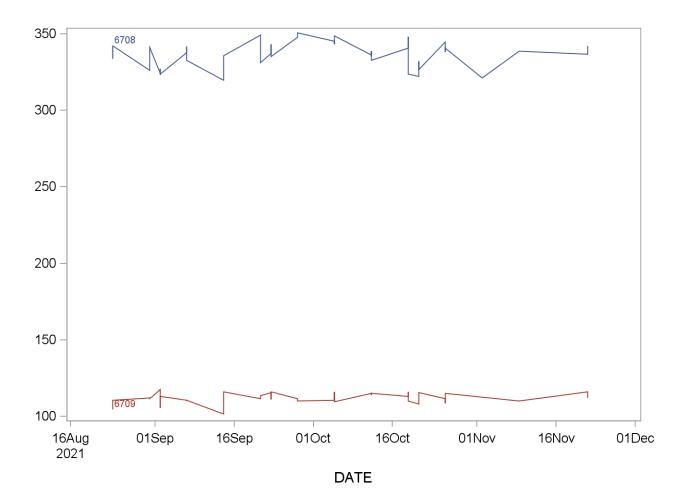

Lot	n	Start Date	End Date		Standard Deviation	Coefficient of Variation
6708	39	24AUG21	22NOV21	772.0385	20.4796	2.7
6709	39	24AUG21	22NOV21	182.6410	10.1040	5.5

2017-2018 Summary Statistics and QC Chart URXMB3 (N-A-S-(4-hydrxy-2-butenyl)-L-cys(ng/mL))

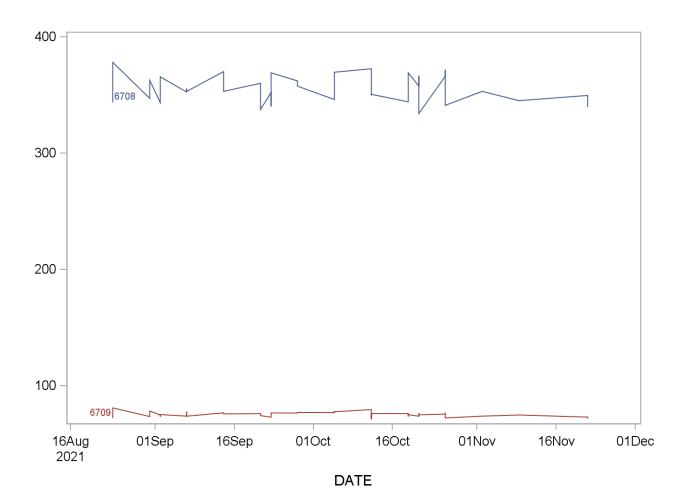

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	32.2776	0.8394	2.6
6709	38	24AUG21	22NOV21	8.6363	0.6383	7.4

DATE

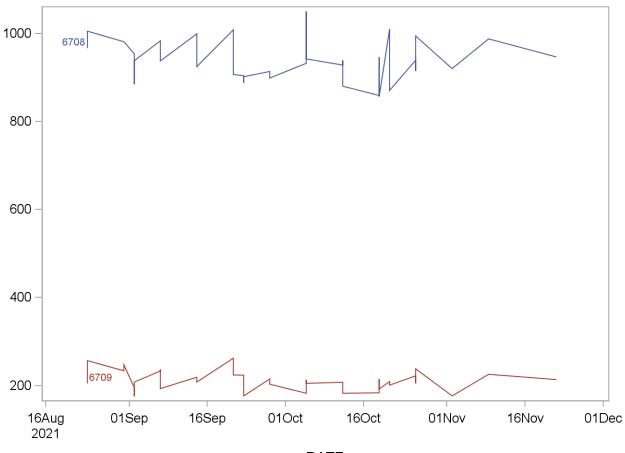
2017-2018 Summary Statistics and QC Chart URXPHE (N-ace-S-(phenI-2-hydxyetI)-L-cys(ng/mL))


Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	26.6750	0.6714	2.5
6709	38	24AUG21	22NOV21	7.6496	0.2667	3.5

DATE


2017-2018 Summary Statistics and QC Chart URXPHG (Phenylglyoxylic acid(ng/mL))

Lot	n	Start Date	End Date	mean		Coefficient of Variation
6708	39	24AUG21	22NOV21	336.2949	8.5492	2.5
6709	39	24AUG21	22NOV21	111.7949	3.4311	3.1


2017-2018 Summary Statistics and QC Chart URXPMM (N-A-S-(3-hydrxprpl-1-metl)-L-cys(ng/mL))

Lot	n	Start Date	End Date			Coefficient of Variation
6708	39	24AUG21	22NOV21	354.9487	11.2219	3.2
6709	39	24AUG21	22NOV21	75.0231	2.1810	2.9

2017-2018 Summary Statistics and QC Chart URXTTC (2-Thioxothiazolidine-4-carboxylic acid)

Lot	n	Start Date	End Date			Coefficient of Variation
6708	38	24AUG21	22NOV21	941.434	46.150	4.9
6709	38	24AUG21	22NOV21	210.000	22.222	10.6

DATE

APPENDIX A: Ruggedness Testing

The ruggedness of the method was evaluated by the following parameters that were assessed through independent experiments:

i. Methanol as organic phase (Solvent B):

Acetonitrile was favored over methanol for mobile phase B because the latter created higher backpressure.

ii. Stability at 4°C and -20°C:

No statistically significant difference among data for any analyte was observed when samples were stored at 4°C and -20°C for a week. For long-term, samples should be stored at -70°C.

iii. Samples run at 1:10 and 1:50 dilutions:

Samples were prepared at 1:10 and 1:50 dilutions and were analyzed for all the analytes. The percentage differences among final estimates were < 10%.

iv. Samples run at 1:500, 1:1000, 1:2000, and 1:5000 dilutions for 34MH, MADA, PHGA, and 2MHA:

Samples were prepared at 1:500, 1:1000, 1:2000, and 1: 5000 dilutions and were analyzed for the selected analytes. The percentage differences among final estimates were within 26% with the exception of 1:5000 dilutions.

v. Samples run at different pH values:

Spiked urine samples were adjusted to different pH values and analyte concentrations were measured. All analytes were stable within the pH range from 2-11 (Table A1).

рН	Analyte	Target Concentration (ng/mL)	Measured Concentration (ng/mL)	% Error
2	CEMA	223.95	219.77	-2%
2	ATCA	291.69	300.73	3%
2	GAMA	182.03	207.45	14%
2	AAMA	50.80	53.58	5%
2	HEMA	11.82	10.15	-14%
2	DHBM	157.56	168.45	7%
2	AMCA	125.58	112.79	-10%
2	TTCA	355.88	387.49	9%
2	HPMA	488.78	448.66	-8%
2	HPM2	90.85	106.88	18%
2	MADA	365.70	377.98	3%
2	CYMA	17.33	18.36	6%
2	MHB3	19.37	22.18	14%
2	HPMM	136.56	131.83	-3%
2	PHGA	368.26	352.52	-4%
2	2MHA	125.69	116.28	-7%

Table A1: Effect of pH on urinary metabolite concentrations

		Target	Measured	
pН	Analyte	Concentration	Concentration	% Error
	DDL()	(ng/mL)	(ng/mL)	00/
2	BPMA	21.17	22.97	9%
2	34MH	105.12	106.36	1%
2	PHEM	16.78	14.52	-13%
2	BMA	16.71	18.06	8%
2	СҮНА	88.63	89.81	1%
2	IPM3	17.08	20.28	19%
3	CEMA	223.95	230.59	3%
3	ATCA	291.69	307.95	6%
3	GAMA	182.03	220.03	21%
3	AAMA	50.80	58.07	14%
3	HEMA	11.82	13.42	14%
3	DHBM	157.56	168.42	7%
3	AMCA	125.58	120.68	-4%
3	TTCA	355.88	391.20	10%
3	HPMA	488.78	480.16	-2%
3	HPM2	90.85	87.44	-4%
3	MADA	365.70	397.78	9%
3	CYMA	17.33	20.40	18%
3	MHB3	19.37	16.64	-14%
3	HPMM	136.56	134.05	-2%
3	PHGA	368.26	371.34	1%
3	2MHA	125.69	122.95	-2%
3	BPMA	21.17	22.69	7%
3	34MH	105.12	107.47	2%
3	PHEM	16.78	15.58	-7%
3	BMA	16.71	17.44	4%
3	CYHA	88.63	82.80	-7%
3	IPM3	17.08	19.13	12%
4	CEMA	223.95	227.65	2%
4	ATCA	291.69	286.64	-2%
4	GAMA	182.03	192.95	6%
4	AAMA	50.80	53.68	6%
4	HEMA	11.82	11.74	-1%
4	DHBM	157.56	161.28	2%
4	AMCA	125.58	127.33	1%
4	TTCA	355.88	366.90	3%
4	HPMA	488.78	536.26	10%
4	HPM2	90.85	94.02	3%
4	MADA	365.70	370.62	1%
4	CYMA	17.33	16.40	-5%
4	MHB3	19.37	17.61	-9%
4	HPMM	136.56	133.18	-978 -2%
4	PHGA	368.26	354.84	-276 -4%
4	2MHA	125.69	128.76	-4%
4			22.44	2% 6%
	BPMA	21.17		
4	34MH	105.12	103.80	-1%
4	PHEM	16.78	14.81	-12%

		Target	Measured	
pН	Analyte	Concentration (ng/mL)	Concentration (ng/mL)	% Error
4	BMA	16.71	19.56	17%
4	CYHA	88.63	99.58	12%
4	IPM3	17.08	19.55	14%
5	CEMA	223.95	205.16	-8%
5	ATCA	291.69	274.52	-6%
5	GAMA	182.03	194.48	7%
5	AAMA	50.80	44.83	-12%
5	HEMA	11.82	10.99	-7%
5	DHBM	157.56	155.80	-1%
5	AMCA	125.58	128.50	2%
5	TTCA	355.88	372.35	5%
5	HPMA	488.78	437.26	-11%
5	HPM2	90.85	94.19	4%
5	MADA	365.70	374.83	2%
5	CYMA	17.33	17.41	0%
5	MHB3	19.37	18.61	-4%
5	HPMM	136.56	121.27	-11%
5	PHGA	368.26	345.49	-6%
5	2MHA	125.69	114.29	-9%
5	BPMA	21.17	22.58	7%
5	34MH	105.12	102.02	-3%
5	PHEM	16.78	16.15	-4%
5	BMA	16.71	18.37	10%
5	СҮНА	88.63	95.40	8%
5	IPM3	17.08	17.02	0%
6	CEMA	223.95	206.78	-8%
6	ATCA	291.69	282.28	-3%
6	GAMA	182.03	188.66	4%
6	AAMA	50.80	51.21	1%
6	HEMA	11.82	11.06	-6%
6	DHBM	157.56	158.73	1%
6	AMCA	125.58	119.40	-5%
6	TTCA	355.88	343.18	-4%
6		488.78	465.91	-470
	HPMA		79.93	-12%
6	HPM2	90.85		-12%
6	MADA	365.70	352.12	
6	CYMA MHB3	17.33	17.82	3% -9%
6	MHB3 HPMM	19.37	17.65	
6	HPMM	136.56	127.44	-7%
6	PHGA	368.26	344.67	-6%
6	2MHA DDMA	125.69	117.61	-6%
6	BPMA	21.17	20.30	-4%
6	34MH	105.12	104.17	-1%
6	PHEM	16.78	15.09	-10%
6	BMA	16.71		
6	CYHA IDM (2	88.63	77.53	-13%
6	IPM3	17.08	19.89	16%

		Target	Measured	
рН	Analyte	Concentration	Concentration	% Error
7	CEMA	(ng/mL) 223.95	(ng/mL) 208.71	-7%
7	ATCA	223.93	294.32	-770
7	GAMA	182.03	167.40	-8%
7	AAMA	50.80	47.67	-6%
7	HEMA	11.82	12.97	-076 10%
7	DHBM	157.56	141.00	-11%
7	АМСА	125.58	130.01	-11% 4%
7	TTCA	355.88		4% 0%
7	HPMA		355.25 403.29	-17%
7		488.78		
	HPM2	90.85	93.09	2%
7	MADA	365.70	339.19	-7%
7	CYMA	17.33	17.74	2%
7	MHB3	19.37	19.00	-2%
7	HPMM	136.56	110.33	-19%
7	PHGA	368.26	339.88	-8%
7	2MHA	125.69	112.43	-11%
7	BPMA	21.17	21.97	4%
7	34MH	105.12	101.98	-3%
7	PHEM	16.78	17.50	4%
7	BMA	16.71	18.20	9%
7	CYHA	88.63	93.64	6%
7	IPM3	17.08	19.59	15%
8	CEMA	223.95	212.62	-5%
8	ATCA	291.69	318.47	9%
8	GAMA	182.03	192.92	6%
8	AAMA	50.80	49.10	-3%
8	HEMA	11.82	12.12	3%
8	DHBM	157.56	146.62	-7%
8	AMCA	125.58	130.64	4%
8	TTCA	355.88	360.97	1%
8	HPMA	488.78	444.95	-9%
8	HPM2	90.85	82.88	-9%
8	MADA	365.70	387.61	6%
8	CYMA	17.33	16.17	-7%
8	MHB3	19.37	18.68	-4%
8	HPMM	136.56	118.43	-13%
8	PHGA	368.26	352.75	-4%
8	2MHA	125.69	114.11	-9%
8	BPMA	21.17	22.57	7%
8	34MH	105.12	102.31	-3%
8	PHEM	16.78	17.42	4%
8	BMA	16.71	19.52	17%
8	CYHA	88.63	86.57	-2%
8	IPM3	17.08	18.84	10%
9	CEMA	223.95	212.58	-5%
				3%
9	ATCA	291.69	299.61	1%

		Target	Measured	A/ 7		
pН	Analyte	Concentration (ng/mL)	Concentration (ng/mL)	% Error		
9	AAMA	50.80	46.93	-8%		
9	HEMA	11.82	12.09	2%		
9	DHBM	157.56	153.24	-3%		
9	AMCA	125.58	98.41 -22%			
9	TTCA	355.88	345.07	-3%		
9	HPMA	488.78	501.72	3%		
9	HPM2	90.85	85.72	-6%		
9	MADA	365.70	400.78	10%		
9	CYMA	17.33	18.89	9%		
9	MHB3	19.37	16.56	-15%		
9	HPMM	136.56	122.98	-10%		
9	PHGA	368.26	366.67	0%		
9	2MHA	125.69	119.87	-5%		
9	BPMA	21.17	24.52	16%		
9	34MH	105.12	102.54	-2%		
9	PHEM	16.78	15.34	-9%		
9	BMA	16.71	15.63	-6%		
9	CYHA	88.63	91.47	3%		
9	IPM3	17.08	19.15	12%		
10	CEMA	223.95	209.07	-7%		
10	ATCA	291.69	301.94	4%		
10	GAMA	182.03	185.12	2%		
10	AAMA	50.80	43.03	-15%		
10	HEMA	11.82	11.04	-7%		
10	DHBM	157.56	146.21	-7%		
10	AMCA	125.58	101.21	-19%		
10	TTCA	355.88	330.45	-7%		
10	HPMA	488.78	521.40	7%		
10	HPM2	90.85	86.73	-5%		
10	MADA	365.70	354.00	-3%		
10	CYMA	17.33	18.61	7%		
10	MHB3	19.37	19.37	0%		
10	HPMM	136.56	114.17	-16%		
10	PHGA	368.26	321.19	-13%		
10	2MHA	125.69	118.43	-6%		
10	BPMA	21.17	25.19	19%		
10	34MH	105.12	104.14	-1%		
10	PHEM	16.78	16.31	-3%		
10	BMA	16.71	17.45	4%		
10	CYHA	88.63	88.91	0%		
10	IPM3	17.08	17.68	4%		
11	CEMA	223.95	217.72	-3%		
11	ATCA	291.69	300.91	3%		
11	GAMA	182.03	185.76	2%		
11	AAMA	50.80	39.76	-22%		
11	HEMA	11.82	12.65	7%		
				-9%		

рН	Analyte	Target Concentration (ng/mL)	Measured Concentration (ng/mL)	% Error
11	AMCA	125.58	102.62	-18%
11	TTCA	355.88	323.33	-9%
11	HPMA	488.78	440.49	-10%
11	HPM2	90.85	91.36	1%
11	MADA	365.70	347.19	-5%
11	CYMA	17.33	16.22	-6%
11	MHB3	19.37	17.25	-11%
11	HPMM	136.56	122.82	-10%
11	PHGA	368.26	323.43	-12%
11	2MHA	125.69	108.07	-14%
11	BPMA	21.17	22.68	7%
11	34MH	105.12	93.93	-11%
11	PHEM	16.78	15.45	-8%
11	BMA	16.71	18.62	11%
11	CYHA	88.63	73.34	-17%
11	IPM3	17.08	19.00	11%

APPENDIX B: Calibration Curve Matrix Validation

Table B1. Typical slopes of matrix based (urine) and solvent based (15 mM ammonium acetate) concentration plots of selected VOC metabolites. The difference in slopes from matrix-matched urine calibrators and non-matrix-matched calibrators meets DLS PPM requirements of less than or equal to 5% difference)

		Slope	
Analyte code	Urine matrix	15 mM Ammonium acetate matrix	% Difference
AAMA	0.9242	0.9262	0.22
AMCA	0.9623	0.9626	0.032
ATCA	1.0047	1.0048	0.010
BMA	1.0111	1.0103	0.079
BPMA	0.9737	0.9737	0.000
CEMA	0.9737	0.9723	0.021
СҮМА	0.9723	0.9993	0.010
1DCV	0.9992	0.9993	0.02
	1.0233		0.059
2DCV DHBM		1.0239	0.010
	0.9529	0.9530	0.000
GAMA	1.0110	1.0110	0.000
HEMA	1.1831	1.1843	0.10
HPMA	1.0149	1.0153	0.040
HPM2	0.9638	0.9640	
HPMM	0.9662	0.9660	0.021
MADA	0.9999	1.0022	0.23
2MHA	0.9646	0.9655	0.093
34MH	0.9904	0.9906	0.020
MHB3	1.2050	1.2040	0.083
PHGA	0.9930	0.9929	0.010
PHEM	0.9839	0.9837	0.020
PMA	0.9925	0.9915	0.10
TCVM	0.9873	0.9877	0.041
TTCA	0.9404	0.9412	0.085
CYHA	0.0704	0.0676	3.97
IPM3	0.0751	0.0764	1.75

APPENDIX C: Method Performance Documentation

Method performance documentation for this method including accuracy, precision, specificity, and stability is provided in Appendix C of this method documentation. The signatures of the Branch Chief and Director of the Division of the Laboratory Sciences on the first page of this procedure denote that the method performance is fit for the intended use of the method.

Table C1. Accuracy using spike recovery
 Accuracy using Spike Recovery - fill in yellow shaded cells Recovery = (final concentration - initial concentration)/added concentration Recovery should be 85-115% except at 3*LOD where can be 80-120%

Method name:	VOC metabo	olites in urine
Method #:	2103a	
Matrix:	Urine	
Units:	µg/L	
Analyte:	CEMA	

			Sam	ple 1				San	nple 2				
			Measur	ed conce	ntration			Measur	ed concer	ntration			
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)	SD (%)
Sample	1	0.00	2.42	2.34			0.00	2.14	2.22				
	2	0.00	2.15	2.17	2.27		0.00	2.20	2.42	2.23		101	1.82
	3		2.18	2.35				2.12	2.30				
Sample + Spike 1	1	41.4	42.4	45.0			131	131	133				
	2	41.4	41.4	46.9	43.7	100	151	131	131	133	99.7		
	3		41.9	44.9				137	133				
Sample + Spike 2	1	65.6	67.8	69.9			207	204	211				
	2	05.0	66.4	63.7	67.3	99.2	207	205	214	209	99.6		
	3		71.7	64.5				211	209				
Sample + Spike 3	1	85.7	91.5	98.5			271	273	277				
	2	65.7	86.0	92.3	91.5	104	271	259	274	276	101		
	3		91.0	89.8				290	282				

Analyte:

ATCA

			San	nple 1				San	nple 2				
			Measur	ed conce	ntration			Measur	ed concei	ntration			
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)	SD (%)
Sample	1	0.00	3.68	6.69			0.00	2.85	4.83				
	2	0.00	2.57	6.66	4.19		0.00	1.67	1.49	2.71		106	4.60
	3		3.99	1.53				3.29	2.15				
Sample + Spike 1	1	61.8	62.8	67.0			195	197	206				
	2	01.0	63.5	71.5	69.6	106	195	212	214	212	107		
	3		78.3	74.4				215	228				
Sample + Spike 2	1	98.0	102	114			310	346	340				
	2	98.0	94.3	95.7	103	101	510	314	337	329	105		
	3		104	110				304	335				
Sample + Spike 3	1	120	140	158			405	393	444				
	2	128	140	150	151	115	405	418	442	425	104		
	3		144	175				440	414				

Analyte:

GAMA

			San	ıple 1				San	nple 2					
			Measur	ed conce	ntration			Measur	red concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1		1.01	0.92		(/*/		1.05	1.11		(///			(/0)
·· · ·	2	0.00	1.15	0.99	1.04		0.00	0.99	0.93	1.00			97.6	2.42
	3		1.08	1.07				0.97	0.96					
Sample + Spike 1	1	41.0	40.0	39.0			130	122	124			1		
	2	41.0	40.7	40.5	41.0	97.4	150	117	125	125	95.8			
	3		42.8	43.2				129	135					
Sample + Spike 2	1	65.1	62.3	68.2			206	198	197					
	2	05.1	62.2	65.4	64.8	97.9	200	192	205	201	97.0			
	3		64	66				211	200					
Sample + Spike 3	1	85.0	87.3	91.6			269	254	258					
	2	65.0	81.3	91.2	87.9	102	209	249	263	258	95.6			
	3		90.3	86.0				268	256					

Analyte: AAMA

			San	nple 1				Sar	nple 2		
			Measur	ed conce	ntration			Measu	red concer	ntration	
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)
Sample	1	0.00	0.49	0.46			0.00	0.46	0.41		
	2	0.00	0.43	0.43	0.46		0.00	0.43	0.43	0.44	
	3		0.45	0.50				0.43	0.49		
Sample + Spike 1	1	7.61	8.01	8.63			24.1	23.4	23.6		
	2	7.61	7.62	8.11	8.3	102	24.1	23.5	24.1	24.2	98.5
	3		9.00	8.21				25.7	24.6		
Sample + Spike 2	1	12.1	12.9	13.1			20.2	39.7	41.2		
	2	12.1	12.5	12.4	12.9	103	38.2	36.5	38.5	38.8	100
	3		13.1	13.2				38.4	38.5		
Sample + Spike 3	1	45.0	17.1	18.3			40.0	50.9	51.2		
	2	15.8	17.1	17.6	17.3	107	49.9	49.4	50.5	50.7	101
	3		16.8	16.6				51.1	51.0		

SD (%) Mean overy (%) 102 2.75

Analyte: HEMA

			Sam	nple 1				San	nple 2					
			Measur	ed concei	ntration			Measur	red concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.21	0.22			0.00	0.24	0.34					
	2	0.00	0.24	0.16	0.24		0.00	0.39	0.40	0.31			104	6.15
	3		0.27	0.36				0.26	0.20					
Sample + Spike 1	1	2.60	3.36	3.17			8.23	8.81	8.98					
	2	2.00	2.78	3.39	3.25	116	6.25	8.45	7.99	8.51	99.6			
	3		3.32	3.49				8.58	8.26					
Sample + Spike 2	1	4.12	4.08	5.04			12.4	13.8	13.0					
	2	4.13	3.96	5.09	4.58	105	13.1	13.3	12.7	13.2	98.8			
	3		5.18	4.15				12.7	13.7					
Sample + Spike 3	1	5.40	5.84	4.91			17.1	17.6	16.9			1		
	2	5.40	5.90	5.91	5.74	102	17.1	18.9	16.8	17.7	102			
	3		5.84	6.06				17.3	18.6					

Analyte:

DHBM

CYHA

			San	nple 1				Sar	nple 2					
			Measur	ed conce	ntration			Measu	red concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	2.16	2.03			0.00	1.90	2.05					
	2	0.00	1.93	2.00	2.00		0.00	1.99	1.91	2.00			103	1.69
	3		1.92	1.95				1.90	2.27					
Sample + Spike 1	1	27.6	30.5	32.6			87.2	86.1	92.6					
	2	27.0	28.7	30.0	30.9	105	07.2	89.2	89.6	90.4	101			
	3		32.4	30.9				94.0	91.1					
Sample + Spike 2	1	43.7	45.7	48.9			120	138	147			1		
	2	43.7	46.2	44.7	46.6	102	138	137	141	142	101			
	3		49.9	44.1				142	148					
Sample + Spike 3	1	57.4	61.6	68.2			101	181	187			1		
	2	57.1	57.6	61.6	62.1	105	181	177	195	188	103			
	3		61.6	62.2				196	190					

			San	nple 1				San	nple 2					
			Measur	ed concei	ntration			Measur	ed concer	tration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00					
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			110	2.65
	3		0.00	0.00				0.00	0.00					
Sample + Spike 1	1	17.0	20.5	18.5			56.2	60.3	62.9					
	2	17.8	18.1	19.9	19.4	109	56.3	62.9	64.4	62.6	111			
	3		18.9	20.3				63.3	62.0					
Sample + Spike 2	1	20.2	28.6	31.0			00.2	107	97.9					
	2	28.3	30.2	30.7	29.9	106	89.3	95.6	100	101	113			
	3		29.7	29.5				101	102					
Sample + Spike 3	1	36.9	40.9	45.2			447	125	132			1		
	2	36.9	38.0	41.6	41.6	113	117	115	136	127	109			
	3		42.8	41.1				126	131					

Analyte: AMCA

			San	nple 1				Sar	nple 2			
			Measur	ed conce	ntration			Measu	red concer	ntration		
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)
Sample	1	0.00	0.42	0.42			0.00	0.32	0.60			
	2	0.00	0.48	0.53	0.46		0.00	0.47	0.45	0.44		103
	3		0.51	0.39				0.40	0.39			
Sample + Spike 1	1	24.9	27.3	25.9			78.9	75.8	83.1			
	2	24.9	27.8	25.8	26.4	104	78.9	76.1	85.6	78.8	99.3	
	3		25.6	26.1				82.4	69.8			
Sample + Spike 2	1	39.6	40.4	43.3			125	136	122			
	2	35.0	43.9	39.9	41.5	104	125	129	124	125.9	100	
	3		38.6	42.7				128	116			
Sample + Spike 3	1	51.7	50.9	64.3			163	151	163			
	2	51.7	56.9	55.6	56.8	109	103	175	166	167.2	102	
	3		58.5	54.4				180	168			

SD (%)

3.44

Analyte: TTCA

			San	nple 1				San	nple 2			1		
			Measur	ed concei	ntration			Measur	ed concei	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	10.2	10.2			0.00	10.1	10.0					
	2	0.00	10.3	10.0	10.2		0.00	10.2	10.1	10.1			104	2.17
	3		10.1	10.1				10.2	10.1					
Sample + Spike 1	1	77.2	98.4	90.7			244	249	274					
	2	11.2	85.7	82.8	89.1	102	244	285	276	269	106			
	3		89.8	86.9				271	257					
Sample + Spike 2	1	122	135	149			387	417	449					
	2	122	129	137	136	103	307	385	414	405	102			
	3		129	139				394	374					
Sample + Spike 3	1	160	171	200			506	525	549					
	2	100	167	185	182	107	506	484	536	532	103			
	3		180	189				525	575					

Analyte:

HPMA

MADA

			San	nple 1					nple 2				
			Measur	ed conce	ntration			Measu	red concer	ntration			
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)	SD (%)
Sample	1	0.00	6.77	6.63			0.00	6.41	6.86				
	2	0.00	6.68	6.61	6.73		0.00	6.38	6.83	6.53		107	1.86
	3		6.92	6.77				6.20	6.51				
Sample + Spike 1	1	89.4	99.6	97.4			283	304	285				
	2	69.4	100	101	102	107	265	303	310	302	105		
	3		106	109				312	302				
Sample + Spike 2	1	142	148	156			448	482	492				
	2	142	147	162	157	106	440	453	492	481	106		
	3		168	159				493	476				
Sample + Spike 3	1	105	206	221			FOF	641	645				
	2	185	197	212	211	110	585	612	642	635	107		
	3		217	210				647	625				

			San	nple 1				San	nple 2				
			Measur	ed concei	ntration			Measur	red concer	ntration			
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)	SD (%)
Sample	1	0.00	1.40	24.5			0.00	6.13	0.68				
	2	0.00	2.56	9.64	6.99		0.00	3.83	0.00	2.89		106	5.35
	3		2.44	1.41				5.11	1.61				
Sample + Spike 1	1	82.5	97.5	110			261	290	255				
	2	82.5	105	97.6	98.5	111	201	264	264	268	101		
	3		102	79.8				267	265				
Sample + Spike 2	1	131	137	159			414	409	432				
	2	151	134	134	140	102	414	389	437	426	102		
	3		139	140				466	420				
Sample + Spike 3	1	171	199	221			540	586	577				
	2	1/1	184	202	202	114	540	535	604	575	106		
	3		196	211				565	584				

Analyte: HPM2

			San	nple 1				San	nple 2			
			Measur	ed conce	ntration			Measur	red concer	ntration		
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00			
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		101
	3		0.00	0.00				0.00	0.00			
Sample + Spike 1	1	18.2	17.2	18.6			57.6	56.7	56.0			
	2	16.2	17.9	20.3	18.7	102	57.0	55.3	57.4	56.4	98.0	
	3		19.4	18.6				59.7	53.5			
Sample + Spike 2	1	28.9	28.6	30.3			91.4	93.8	91.5			
	2	28.9	28.4	28.1	29.1	101	91.4	89.3	92.5	92.5	101	
	3		29.3	29.7				94.4	93.4			
Sample + Spike 3	1	37.7	38.4	42.5			119	111	123			
	2	37.7	37.4	39.7	39.5	105	119	115	124	118	99.3	
	3		40.0	38.9				120	120			

SD (%)

2.33

Analyte: СҮМА

			Sam	nple 1				Sar	nple 2			Ι.		
			Measur	ed conce	ntration			Measu	red concei	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00					
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			109	0.91
	3		0.00	0.00				0.00	0.00					
Sample + Spike 1	1	3.43	3.83	3.90			10.9	10.3	12.2					
	2	5.45	3.44	3.34	3.73	109	10.9	10.9	11.6	11.7	108			
	3		3.85	4.02				11.9	13.4					
Sample + Spike 2	1	5.45	6.61	5.70			17.2	17.8	19.1					
	2	5.45	5.52	5.59	5.83	107	17.2	18.2	18.6	18.9	109			
	3		5.42	6.13				19.8	19.6					
Sample + Spike 3	1	7.11	8.52	7.33			22.5	23.9	24.8					
	2	/.11	7.54	7.67	7.75	109	22.5	22.6	25.2	24.5	109			
	3		7.50	7.93				27.0	23.7					

Analyte:

MHB3

HPMM

			San	nple 1				Sar	nple 2					
			Measur	ed conce	ntration			Measu	red concer	tration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.04	0.16			0.00	0.00	0.08					
	2	0.00	0.20	0.10	0.19		0.00	0.27	0.00	0.12			110	4.28
	3		0.22	0.41				0.20	0.21					
Sample + Spike 1	1	3.81	4.65	4.12			42.0	12.9	13.4					
	2	5.61	4.31	4.12	4.26	107	12.0	13.1	13.2	13.0	107			
	3		4.05	4.32				12.9	12.6					
Sample + Spike 2	1	6.04	6.72	6.67			10.1	20.0	21.6					
	2	6.04	6.81	6.67	6.54	105	19.1	19.8	22.4	21.0	109			
	3		6.79	5.57				21.7	20.6					
Sample + Spike 3	1	7.00	9.31	9.31			25.0	28.6	28.7			1		
	2	7.89	8.71	10.47	9.36	116	25.0	26.4	30.4	28.4	113			
	3		9.35	8.98				28.6	27.8					

			San	ıple 1				San	nple 2					
			Measur	ed concei	ntration			Measur	ed concer	tration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.44	0.57			0.00	0.54	0.91					
	2	0.00	0.52	0.66	0.59		0.00	0.62	0.80	0.70			109	2.54
	3		0.60	0.73				0.77	0.57					
Sample + Spike 1	1	20.0	23.5	24.4			65.0	67.1	69.2					
	2	20.8	23.9	24.4	24.0	112	65.8	72.0	70.8	70.1	106			
	3		25.0	22.6				72.2	69.5					
Sample + Spike 2	1	33.0	34.8	35.9			104	113	113					
	2	55.0	35.7	37.7	36.3	108	104	110	111	113	107			
	3		37.8	35.7				114	114					
Sample + Spike 3	1	42.4	47.3	51.7			120	152	153			1		
	2	43.1	45.1	48.1	48.4	111	136	142	152	151	110			
	3		50.1	48.3				155	151					

Analyte: PHGA

			San	nple 1				San	nple 2			
			Measur	ed conce	ntration			Measur	ed concer	ntration		
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)
Sample	1	0.00	5.22	4.66			0.00	4.66	4.71			
	2	0.00	5.48	5.01	5.11		0.00	4.79	4.47	4.74		102
	3		5.42	4.85				5.06	4.77			
Sample + Spike 1	1	69.3	72.0	78.0			219	235	228			
	2	09.5	70.4	78.3	75.4	101	219	234	217	229	102	
	3		80.3	73.5				219	242			
Sample + Spike 2	1	110	113	116			348	360	367			
	2	110	117	118	117	102	546	330	362	358	102	
	3		123	113				373	355			
Sample + Spike 3	1	144	149	157			454	457	480			
	2	144	142	153	153	103	454	440	478	462	101	
	3		162	156				453	464			

SD (%)

0.87

Analyte: IPM3

			Sam	ple 1				San	nple 2			ĺ		
			Measur	ed concei	ntration			Measur	red concei	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.03	0.02			0.00	0.08	0.00					
	2	0.00	0.00	0.00	0.05		0.00	0.00	0.00	0.07			112	1.43
	3		0.21	0.05				0.28	0.05					
Sample + Spike 1	1	5.51	5.92	6.44			17.4	19.0	19.6					
	2	5.51	5.49	6.67	6.25	112	17.4	18.3	19.6	19.4	111			
	3		6.60	6.38				20.0	20.2					
Sample + Spike 2	1	0.74	9.93	10.0			27.7	31.1	31.9					
	2	8.74	9.38	9.92	9.87	112	27.7	28.8	30.9	30.9	112			
	3		9.81	10.2				32.1	30.8					
Sample + Spike 3	1	11.4	12.6	13.5			26.1	41.2	40.8			1		
	2	11.4	13.2	13.1	13.2	115	36.1	38.8	40.1	40.4	112			
	3		13.7	13.1				41.1	40.6					

Analyte:

2MHA

BPMA

			San	nple 1				San	nple 2					
			Measur	ed conce	ntration			Measur	ed concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00					
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			107	2.88
	3		0.00	0.00				0.00	0.00					
Sample + Spike 1	1	21.3	23.3	20.5			67.3	72.0	74.9					
	2	21.3	21.2	22.7	22.7	107	67.3	79.4	67.9	74.2	110			
	3		26.7	21.8				75.3	75.7					
Sample + Spike 2	1	33.8	38.0	35.6			107	106	121					
	2	55.0	30.2	32.6	34.8	103	107	106	102	112	105			
	3		40.2	32.4				119	115					
Sample + Spike 3	1	44.1	48.9	47.5			139	166	157			1		
	2	44.1	43.1	43.3	47.8	109	139	151	144	153	110			
	3		51.5	52.7				148	153					

			Sam	nple 1				Sar	nple 2			Ι.		
			Measur	ed conce	ntration			Measu	red concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.67	0.69			0.00	0.90	0.68					
	2	0.00	0.73	0.65	0.72		0.00	0.74	0.76	0.74			111	2.77
	3		0.85	0.71				0.69	0.69					
Sample + Spike 1	1	5.31	6.56	6.92			16.8	19.8	16.9					
	2	5.51	6.48	7.07	6.77	114	10.8	19.4	20.5	19.2	110			
	3		6.96	6.64				19.5	19.3					
Sample + Spike 2	1	8.43	9.42	9.16			26.7	29.7	32.0					
	2	0.45	9.79	9.94	9.68	106	20.7	31.7	30.2	30.8	113			
	3		10.13	9.62				30.8	30.3					
Sample + Spike 3	1	11.0	12.3	12.0			24.0	37.9	42.3					
	2	11.0	12.1	15.0	13.2	113	34.8	35.9	38.3	39.4	111			
	3		14.1	13.4				39.8	42.1					

Analyte: 34MH

			Sam	nple 1				Sar	nple 2				
			Measur	ed concei	ntration			Measu	red concei	ntration			
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)	SD (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00				
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		115	3.78
	3		0.00	0.00				0.00	0.00				
Sample + Spike 1	1	42.8	47.0	46.2			135	139	160				
	2	42.0	49.3	48.3	48.2	113	155	158	151	151	112		
	3		49.8	48.5				150	151				
Sample + Spike 2	1	67.9	72.1	76.6			245	240	238				
	2	67.9	74.2	76.4	76.3	112	215	245	246	248	115		
	3		82.4	75.9				262	255				
Sample + Spike 3	1	00 C	98.7	126			200	317	322				
	2	88.6	96.4	110	108	122	280	313	315	320	114		
	3		115.8	102				326	329				

SD (%) 3.04

Analyte: PHEM

			Sam	nple 1				Sar	nple 2			Ι_		
			Measur	ed conce	ntration			Measu	red concer	ntration				
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)		Mean recovery (%)	SD (%)
Sample	1	0.00	0.00	0.00			0.00	0.00	0.00					
	2	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.02			104	2.49
	3		0.00	0.00				0.00	0.10					
Sample + Spike 1	1	2.47	3.61	3.76			11.0	10.8	11.1					
	2	3.47	3.56	3.69	3.62	104	11.0	11.0	11.2	11.2	101			
	3		3.74	3.39				11.8	11.0					
Sample + Spike 2	1	5.50	5.79	6.33			17.4	17.1	17.5					
	2	5.50	5.54	5.47	5.73	104	17.4	17.9	18.3	18.1	104			
	3		5.66	5.56				19.0	18.6					
Sample + Spike 3	1	7.19	7.82	7.97			22.7	22.5	23.4			1		
	2	7.19	7.19	7.51	7.84	109	22.7	22.5	24.2	23.6	104			
	3		8.29	8.27				24.6	24.5					

Analyte: BMA

			San	nple 1				Sar	nple 2			
			Measur	ed conce	ntration			Measu	red concer	ntration		
	Replicate	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Spike concentration	Day 1	Day 2	Mean	Recovery (%)	Mean recovery (%)
Sample	1	0.00	0.04	0.06			0.00	0.04	0.05			
	2	0.00	0.09	0.07	0.07		0.00	0.04	0.06	0.05		106
	3		0.07	0.05				0.04	0.05			
Sample + Spike 1	1	3.00	3.35	3.49			9.50	9.41	9.63			
	2	5.00	3.01	3.39	3.25	106	9.50	9.58	10.1	9.59	100	
	3		3.13	3.10				9.13	9.65			
Sample + Spike 2	1	4.70	4.74	5.35			45.4	16.7	15.7			
	2	4.76	5.09	5.56	5.17	107	15.1	15.0	16.1	15.9	105	
	3		5.02	5.28				15.6	16.0			
Sample + Spike 3	1	6.22	7.47	6.89			40.7	20.5	19.2			
	2	6.22	6.68	6.67	6.87	109	19.7	19.7	20.7	21.1	107	
	3		6.50	7.04				24.3	22.4			

Table C2. Precision

Precision - fill in yellow shaded cells

Total relative standard deviation should be \leq 15% (CV \leq 15%)

Total relative star			/0 (CV 3 15/0)			
Method name:	VOC metabo	lites in urine				
Method #:	2103a					
Matrix:	Urine					
Units:	μg/L					
Analyte:	CEMA					
Quality material	1					
Run	- Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
A17188	47.9	52.4	50.1	5.15	5.15	5.02E+03
A17193	55.0	55.3	55.2	0.02	0.02	6.09E+03
A17087	48.3	57.5	52.9	21.1	21.1	5.59E+03
C17130	48.4	51.4	49.9	2.33	2.33	4.98E+03
C17135	50.8	54.8	52.8	4.04	4.04	5.58E+03
C17138	49.2	54.1	51.6	5.93	5.93	5.33E+03
C17192	49.5	56.2	52.8	11.1	11.1	5.59E+03
C17087	49.4	54.0	51.7	5.34	5.34	5.35E+03
P17135	50.5	42.7	46.6	15.2	15.2	4.34E+03
P17166	48.0	51.5	49.7	2.99	2.99	4.94E+03
Grand sum	1.03E+03	Grand mean	51.3			
				Rel Std Dev		
	6	Manua C	Chil Davi			
Within Run	Sum squares 146	Mean Sq Error 14.6	Std Dev 3.83	(%) 7.46		
Between Run	101	11.3	0.00	0.00		
Total	248		3.83	7.46		
	-					
Quality material						
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1 2	527 540	550 601	539	134	134	5.81E+05
3		513	571	937 2.48	937 2.48	6.51E+05
5 4	510 538	513	511 554	2.48	2.48	5.23E+05 6.14E+05
5	542	575	559	267	267	6.24E+05
6	503	547	525	498	498	5.51E+05
7	488	554	525	1.09E+03	1.09E+03	5.43E+05
8	519	584	551	1.05E+03	1.05E+03	6.08E+05
9	513	563	538	627	627	5.78E+05
10	499	557	528	819	819	5.58E+05
Grand sum	1.079E+04	Grand mean	539.7			
				5 10 15		
	Sum squares	Mean Sq Error	Std Dev	Rel Std Dev		
Within Run Between Run	1.14E+04 6.38E+03	1.14E+03 709	33.7	6.25		
Total	1.78E+04	709	0.00 33.7	0.00 6.25		
10(4)	1.782104		55.7	0.25		
Analyte:	ATCA					
Quality material						
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	103	104	104	0.61	0.61	2.15E+04
2	100	93.0	96.4	11.1	11.1	1.86E+04
3	81.0	96.5	88.7	59.8	59.8	1.58E+04
4	89.0	93.0	91.0	4.06	4.06	1.66E+04
5	93.8	116	105	123	123	2.20E+04
6	82.0	100	90.8	77.8	77.8	1.65E+04
7 8	86.9	99.5	93.2 93.8	39.7	39.7	1.74E+04 1.76E+04
8 9	93.6 90.9	94.1 102	93.8 96.3	0.06 29.4	0.06 29.4	1.76E+04 1.86E+04
9 10	89.5	88.7	96.5 89.1	0.18	0.18	1.86E+04 1.59E+04
	09.9	00.7	53.1	0.10	0.10	1.5501104
Grand sum	1.896E+03	Grand mean	94.8			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	692	69.2	8.32	8.78
Between Run	576	64.0	0.00	0.00
Total	1.27E+03		8.32	8.78

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	913	899	906	48.4	48.4	1.64E+06
2	911	955	933	498	498	1.74E+06
3	826	924	875	2.37E+03	2.37E+03	1.53E+06
4	846	930	888	1.76E+03	1.76E+03	1.58E+06
5	878	990	934	3.14E+03	3.14E+03	1.74E+06
6	831	979	905	5.52E+03	5.52E+03	1.64E+06
7	898	916	907	81.3	81.3	1.65E+06
8	885	958	921	1.34E+03	1.34E+03	1.70E+06
9	858	1002	930	5.18E+03	5.18E+03	1.73E+06
10	948	937	942	29.1	29.1	1.78E+06
Grand sum	1.828E+04	Grand mean	914			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	3.99E+04	3.99E+03	63.2	6.91
Between Run	8.49E+03	943	0.00	0.00
Total	4.84E+04		63.2	6.91

Analyte: GAMA

Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	34.3	34.0	34.2	0.02	0.02	2.33E+03
2	35.3	36.3	35.8	0.24	0.24	2.56E+03
3	32.5	30.2	31.3	1.27	1.27	1.96E+03
4	33.6	34.4	34.0	0.14	0.14	2.31E+03
5	32.3	32.7	32.5	0.06	0.06	2.11E+03
6	32.1	32.7	32.4	0.07	0.07	2.10E+03
7	34.4	37.6	36.0	2.56	2.56	2.59E+03
8	33.3	38.6	35.9	6.84	6.84	2.58E+03
9	31.1	28.1	29.6	2.31	2.31	1.75E+03
10	32.3	34.1	33.2	0.80	0.80	2.20E+03
Grand sum	670	Grand mean	33.5			
				Rel Std Dev		

				ner sta bev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	28.6	2.86	1.69	5.05	
Between Run	80.6	8.95	1.75	5.21	
Total	109		2.43	7.26	

	_					
Quality material						
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	301	318	310	77.2	77.2	1.92E+05
2	303	325	314	115	115	1.97E+05
3	297	300	298	3.57	3.57	1.78E+05
4	295	324	309	216	216	1.91E+05
5	300	314	307	46.7	46.7	1.89E+05
6	297	315	306	85.4	85.4	1.87E+05
7	321	341	331	106	106	2.19E+05
8	322	330	326	18.5	18.5	2.13E+05
9	282	312	297	223	223	1.76E+05
10	302	324	313	126	126	1.96E+05
Grand sum	6.222E+03	Grand mean	311			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	2.04E+03	204	14.3	4.59		
Between Run	2.09E+03	233	3.80	1.22		
Total	4.13E+03		14.8	4.75		

Analyte:	AAMA					
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	13.1	13.5	13.3	0.04	0.04	353
2	13.3	14.0	13.6	0.12	0.12	370
3	14.0	15.7	14.9	0.72	0.72	443
4	14.0	15.5	14.8	0.61	0.61	436
5	14.9	16.8	15.9	0.90	0.90	503
6	14.4	16.0	15.2	0.63	0.63	463
7	12.9	15.4	14.1	1.68	1.68	400
8	13.8	17.2	15.5	2.87	2.87	482
9	14.0	12.8	13.4	0.40	0.40	359
10	14.9	16.2	15.6	0.46	0.46	484
Grand sum	292	Grand mean	14.6			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		

				Rei Stu Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	16.9	1.69	1.30	8.88	
Between Run	16.4	1.82	0.26	1.79	
Total	33.3		1.32	9.06	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	104	110	107	11.3	11.3	2.29E+04
2	103	109	106	9.55	9.55	2.26E+04
3	102	134	118	253	253	2.80E+04
4	109	125	117	63.8	63.8	2.75E+04
5	120	130	125	25.3	25.3	3.10E+04
6	117	126	121	17.7	17.7	2.95E+04
7	106	119	113	41.9	41.9	2.53E+04
8	108	128	118	98.8	98.8	2.79E+04
9	114	118	116	4.28	4.28	2.67E+04
10	109	115	112	10.4	10.4	2.51E+04
Grand sum	2.31E+03	Grand mean	115			
				Rel Std Dev		

	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	1.07E+03	107	10.4	8.98	
Between Run	619	68.8	0.00	0.00	
Total	1.69E+03		10.4	8.98	

Analyte:

HEMA

Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	4.15	4.04	4.10	0.00	0.00	33.5
2	3.87	4.19	4.03	0.03	0.03	32.5
3	3.75	4.81	4.28	0.28	0.28	36.6
4	3.66	3.87	3.77	0.01	0.01	28.4
5	3.53	4.26	3.90	0.13	0.13	30.3
6	3.91	4.42	4.17	0.07	0.07	34.7
7	3.66	4.26	3.96	0.09	0.09	31.4
8	4.47	4.43	4.45	0.00	0.00	39.6
9	5.16	4.17	4.67	0.25	0.25	43.5
10	4.53	4.21	4.37	0.03	0.03	38.2
Grand sum	83.4	Grand mean	4.17			
				Rel Std Dev		

				Rel Sta Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	1.76	0.18	0.42	10.1	
Between Run	1.37	0.15	0.00	0.00	
Total	3.13		0.42	10.1	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	42.9	45.1	44.0	1.18	1.18	3.87E+03
2	38.8	46.6	42.7	15.2	15.2	3.64E+03
3	44.5	48.0	46.2	3.03	3.03	4.27E+03
4	39.4	42.7	41.1	2.76	2.76	3.37E+03
5	46.7	46.3	46.5	0.03	0.03	4.32E+03
6	42.7	46.7	44.7	4.04	4.04	4.00E+03
7	44.7	47.5	46.1	2.02	2.02	4.25E+03
8	46.9	46.6	46.8	0.02	0.02	4.37E+03
9	46.3	49.2	47.8	2.04	2.04	4.56E+03
10	46.7	48.2	47.5	0.56	0.56	4.50E+03
Grand sum	907	Grand mean	45.3			

			Rel Std Dev
Sum squares	Mean Sq Error	Std Dev	(%)
61.8	6.18	2.49	5.48
84.9	9.44	1.28	2.82
147		2.79	6.16
	61.8 84.9	61.8 6.18 84.9 9.44	61.86.182.4984.99.441.28

Analyte: DHBM

Result 1 124	Result 2	Mean	SS 1	SS 2	
124		Mean	SS 1	66.3	
	122			33 Z	2*mean^2
127		123	0.83	0.83	3.01E+04
127	124	126	1.22	1.22	3.15E+04
115	116	116	0.31	0.31	2.67E+04
125	130	127	7.51	7.51	3.25E+04
123	132	128	18.8	18.8	3.26E+04
126	131	128	6.13	6.13	3.29E+04
112	140	126	200	200	3.19E+04
133	142	137	21.5	21.5	3.78E+04
125	116	120	22.5	22.5	2.90E+04
119	132	126	40.1	40.1	3.16E+04
2.51E+03	Grand mean	126			
			Rel Std Dev		
	127 115 125 123 126 112 133 125 119	127124115116125130123132126131112140133142125116119132	127124126115116116125130127123132128126131128112140126133142137125116120119132126	127 124 126 1.22 115 116 116 0.31 125 130 127 7.51 123 132 128 18.8 126 131 128 6.13 112 140 126 200 133 142 137 21.5 125 116 120 22.5 119 132 126 40.1	127 124 126 1.22 1.22 115 116 116 0.31 0.31 125 130 127 7.51 7.51 123 132 128 18.8 18.8 126 131 128 6.13 6.13 112 140 126 200 200 133 142 137 21.5 21.5 119 132 126 40.1 40.1

	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	638	63.8	7.99	6.36
Between Run	579	64.3	0.50	0.40
Total	1.22E+03		8.00	6.37

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	391	421	406	225	225	3.30E+05
2	376	446	411	1.22E+03	1.22E+03	3.38E+05
3	342	435	389	2.15E+03	2.15E+03	3.02E+05
4	393	415	404	111	111	3.26E+05
5	390	438	414	565	565	3.43E+05
6	413	414	414	0.44	0.44	3.42E+05
7	383	448	415	1036	1036	3.45E+05
8	427	415	421	34.0	34.0	3.55E+05
9	397	434	416	331	331	3.46E+05
10	394	406	400	31.5	31.5	3.20E+05
Grand sum	8.18E+03	Grand mean	409			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	1.14E+04	1.14E+03	33.8	8.26		
Between Run	1.62E+03	180	0.00	0.00		
Total	1.30E+04		33.8	8.26		

Analyte:	CYHA					
	• •					
Quality materi	al 1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	6.70	7.05	6.88	0.03	0.03	94.5
2	6.84	6.80	6.82	0.00	0.00	93.0
3	6.12	6.72	6.42	0.09	0.09	82.4
4	6.98	7.10	7.04	0.00	0.00	99.1
5	6.24	7.96	7.10	0.74	0.74	101
6	6.65	6.58	6.62	0.00	0.00	87.5
7	6.66	7.76	7.21	0.30	0.30	104
8	6.87	8.10	7.49	0.38	0.38	112
9	7.23	6.11	6.67	0.31	0.31	89.0
10	7.23	6.70	6.97	0.07	0.07	97.0
Grand sum	138	Grand mean	6.92			
				Rol Std Dov		

				Rel Std Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	3.86	0.39	0.62	8.98	
Between Run	1.74	0.19	0.00	0.00	
Total	5.60		0.62	8.98	

	_				
2					
Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
88.3	92.5	90.4	4.43	4.43	1.63E+04
85.5	91.3	88.4	8.32	8.32	1.56E+04
87.8	87.5	87.6	0.01	0.01	1.54E+04
93.0	98.0	95.5	6.05	6.05	1.82E+04
85.5	98.0	91.7	39.0	39.0	1.68E+04
87.1	94.7	90.9	14.5	14.5	1.65E+04
85.4	95.2	90.3	24.1	24.1	1.63E+04
92.7	92.9	92.8	0.01	0.01	1.72E+04
88.7	90.8	89.7	1.06	1.06	1.61E+04
94.1	90.6	92.4	3.10	3.10	1.71E+04
1.82E+03	Grand mean	91.0			
			Rel Std Dev		
Sum squares	Mean Sq Error	Std Dev	(%)		
	Result 1 88.3 85.5 87.8 93.0 85.5 87.1 85.4 92.7 88.7 94.1 1.82E+03	Result 1 Result 2 88.3 92.5 85.5 91.3 87.8 87.5 93.0 98.0 85.5 98.0 87.1 94.7 85.4 95.2 92.7 92.9 88.7 90.8 94.1 90.6 1.82E+03 Grand mean	Result 1Result 2Mean88.392.590.485.591.388.487.887.587.693.098.095.585.598.091.787.194.790.985.495.290.392.792.992.888.790.889.794.190.692.41.82E+03Grand mean91.0	Result 1 Result 2 Mean SS 1 88.3 92.5 90.4 4.43 85.5 91.3 88.4 8.32 87.8 87.5 87.6 0.01 93.0 98.0 95.5 6.05 85.5 98.0 91.7 39.0 87.1 94.7 90.9 14.5 92.7 92.9 92.8 0.01 94.1 90.6 92.4 3.10 1.82E+03 Grand mean 91.0 Rel Std Dev	Result 1 Result 2 Mean SS 1 SS 2 88.3 92.5 90.4 4.43 4.43 85.5 91.3 88.4 8.32 8.32 87.8 87.5 87.6 0.01 0.01 93.0 98.0 95.5 6.05 6.05 85.5 98.0 91.7 39.0 39.0 87.1 94.7 90.9 14.5 14.5 85.4 95.2 90.3 24.1 24.1 92.7 92.9 92.8 0.01 0.01 88.7 90.8 89.7 1.06 1.06 94.1 90.6 92.4 3.10 3.10 1.82E+03 Grand mean 91.0 Rel Std Dev Std Dev

	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	201	20.1	4.48	4.93
Between Run	93.0	10.3	0.00	0.00
Total	294		4.48	4.93

Analyte:

AMCA

Result 1 26.8 24.8	Result 2 27.7	Mean	SS 1	SS 2	2*mean^2
	27.7				=
24.8		27.2	0.20	0.20	1.48E+03
	27.5	26.2	1.82	1.82	1.37E+03
29.7	34.4	32.0	5.64	5.64	2.05E+03
29.1	31.8	30.4	1.76	1.76	1.85E+03
30.3	31.6	31.0	0.46	0.46	1.92E+03
33.4	30.9	32.2	1.53	1.53	2.07E+03
31.3	38.2	34.7	11.9	11.9	2.41E+03
29.4	35.3	32.4	8.73	8.73	2.09E+03
29.2	27.3	28.3	0.96	0.96	1.60E+03
30.5	33.9	32.2	2.79	2.79	2.07E+03
613	Grand mean	30.7			
	30.3 33.4 31.3 29.4 29.2 30.5	30.3 31.6 33.4 30.9 31.3 38.2 29.4 35.3 29.2 27.3 30.5 33.9	30.3 31.6 31.0 33.4 30.9 32.2 31.3 38.2 34.7 29.4 35.3 32.4 29.2 27.3 28.3 30.5 33.9 32.2	30.3 31.6 31.0 0.46 33.4 30.9 32.2 1.53 31.3 38.2 34.7 11.9 29.4 35.3 32.4 8.73 29.2 27.3 28.3 0.96 30.5 33.9 32.2 2.79	30.331.631.00.460.4633.430.932.21.531.5331.338.234.711.911.929.435.332.48.738.7329.227.328.30.960.9630.533.932.22.792.79

				Rei Stu Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	71.6	7.16	2.68	8.73	
Between Run	128	14.2	1.87	6.11	
Total	199		3.27	10.7	

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	317	355	336	379	379	2.26E+05
2	331	367	349	314	314	2.44E+05
3	342	305	324	327	327	2.09E+05
4	361	372	367	32.1	32.1	2.69E+05
5	359	405	382	518	518	2.92E+05
6	356	377	367	114	114	2.69E+05
7	362	410	386	593	593	2.98E+05
8	363	368	365	5.20	5.20	2.67E+05
9	365	375	370	28.9	28.9	2.74E+05
10	362	375	368	41.3	41.3	2.72E+05
Grand sum	7.23E+03	Grand mean	361			

			Rel Std Dev
Sum squares	Mean Sq Error	Std Dev	(%)
4.70E+03	470	21.7	6.00
6.90E+03	767	12.2	3.37
1.16E+04		24.9	6.88
	4.70E+03 6.90E+03	4.70E+03 470 6.90E+03 767	4.70E+0347021.76.90E+0376712.2

Analyte: TTCA

Quality material	L					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
A17188	40.3	46.8	43.6	10.5	10.5	3.79E+03
A17193	50.2	50.3	50.2	0.00	0.00	5.05E+03
3	49.1	56.1	52.6	12.2	12.2	5.52E+03
4	38.5	47.8	43.2	21.5	21.5	3.73E+03
5	46.8	56.3	51.5	22.6	22.6	5.30E+03
6	46.3	58.9	52.6	39.8	39.8	5.54E+03
C17192	36.0	43.0	39.5	12.2	12.2	3.12E+03
8	50.4	54.9	52.7	5.13	5.13	5.55E+03
9	50.5	51.0	50.8	0.07	0.07	5.15E+03
10	39.9	45.8	42.8	8.76	8.76	3.67E+03
Grand sum	959	Grand mean	47.9			
				Rel Std Dev		

				ner sta bet	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	265	26.5	5.15	10.7	
Between Run	463	51.4	3.53	7.36	
Total	728		6.24	13.0	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	784	743	763	407	407	1.17E+06
2	717	703	710	45.3	45.3	1.01E+06
3	791	776	783	54.7	54.7	1.23E+06
4	735	778	757	464	464	1.15E+06
5	753	773	763	100	100	1.16E+06
6	682	703	692	117	117	9.59E+05
7	642	586	614	790	790	7.54E+05
8	840	834	837	9.73	9.73	1.40E+06
9	813	752	783	926	926	1.23E+06
10	739	737	738	1.32	1.32	1.09E+06
Grand sum	1.49E+04	Grand mean	744			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	5.83E+03	583	24.1	3.24		
Between Run	6.66E+04	7.40E+03	58.4	7.84		
Total	7.24E+04		63.2	8.49		

Analyte:	HPMA					
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	68.6	80.6	74.6	36.3	36.3	1.11E+04
2	84.2	91.4	87.8	12.7	12.7	1.54E+04
3	76.7	89.9	83.3	43.4	43.4	1.39E+04
4	78.9	88.0	83.5	20.7	20.7	1.39E+04
5	81.5	86.2	83.9	5.71	5.71	1.41E+04
6	81.7	93.8	87.7	36.8	36.8	1.54E+04
7	78.4	93.2	85.8	55.4	55.4	1.47E+04
8	75.6	84.9	80.3	21.6	21.6	1.29E+04
9	74.8	73.9	74.4	0.20	0.20	1.11E+04
10	82.7	83.3	83.0	0.11	0.11	1.38E+04
Grand sum	1.65E+03	Grand mean	82.4			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		

	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	466	46.6	6.83	8.28	
Between Run	406	45.1	0.00	0.00	
Total	872		6.83	8.28	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	725	819	772	2.23E+03	2.23E+03	1.19E+06
2	870	1002	936	4.39E+03	4.39E+03	1.75E+06
3	835	808	822	1.85E+02	1.85E+02	1.35E+06
4	849	934	891	1.80E+03	1.80E+03	1.59E+06
5	837	937	887	2.51E+03	2.51E+03	1.57E+06
6	804	925	865	3.63E+03	3.63E+03	1.49E+06
7	811	978	894	6.94E+03	6.94E+03	1.60E+06
8	712	922	817	1.09E+04	1.09E+04	1.33E+06
9	842	896	869	7.52E+02	7.52E+02	1.51E+06
10	887	968	928	1.64E+03	1.64E+03	1.72E+06
Grand sum	1.74E+04	Grand mean	868			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		

83.7

0.00

83.7

Total

7.01E+04 7.01E+03 4.76E+04 5.29E+03 1.18E+05

Rel Std Dev
(%)
9.64
0.00
9.64

Analyte:

Within Run

Between Run

MADA

Quality material 1	L					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	80.5	70.9	75.7	23.0	23.0	1.15E+04
2	85.7	100	92.9	52.6	52.6	1.73E+04
3	68.2	82.1	75.2	48.3	48.3	1.13E+04
4	93.0	82.9	88.0	25.5	25.5	1.55E+04
5	101	88.5	94.6	36.2	36.2	1.79E+04
6	87.6	91.7	89.7	4.20	4.20	1.61E+04
7	88.6	83.1	85.8	7.51	7.51	1.47E+04
8	78.1	86.9	82.5	19.4	19.4	1.36E+04
9	81.2	100	90.8	92.0	92.0	1.65E+04
10	80.9	88.9	84.9	16.0	16.0	1.44E+04
Grand sum	1.72E+03	Grand mean	86.0			
				Rel Std Dev		

	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	649	64.9	8.06	9.37	
Between Run	795	88.3	3.42	3.98	
Total	1.44E+03		8.75	10.2	

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	877	940	909	991	991	1.65E+06
2	972	961	967	29.8	29.8	1.87E+06
3	789	925	857	4.61E+03	4.61E+03	1.47E+06
4	841	1002	921	6.52E+03	6.52E+03	1.70E+06
5	923	916	920	13.4	13.4	1.69E+06
6	983	991	987	14.8	14.8	1.95E+06
7	913	882	897	249	249	1.61E+06
8	944	924	934	104	104	1.74E+06
9	883	835	859	560	560	1.48E+06
10	832	900	866	1.17E+03	1.17E+03	1.50E+06
Grand sum	1.82E+04	Grand mean	912			

			Rel Std Dev
Sum squares	Mean Sq Error	Std Dev	(%)
2.85E+04	2.85E+03	53.4	5.86
3.49E+04	3.88E+03	22.6	2.48
6.34E+04		58.0	6.36
	2.85E+04 3.49E+04	2.85E+04 2.85E+03 3.49E+04 3.88E+03	2.85E+04 2.85E+03 53.4 3.49E+04 3.88E+03 22.6

Analyte: HPM2

Quality material	L					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	17.8	17.1	17.4	0.13	0.13	607
2	16.0	19.3	17.7	2.71	2.71	623
3	16.6	19.3	17.9	1.81	1.81	643
4	16.5	17.9	17.2	0.50	0.50	593
5	17.6	18.7	18.2	0.34	0.34	659
6	16.4	18.3	17.4	0.91	0.91	603
7	16.8	18.3	17.6	0.56	0.56	618
8	17.7	17.8	17.8	0.00	0.00	630
9	18.6	16.3	17.4	1.38	1.38	607
10	18.2	16.6	17.4	0.62	0.62	604
Grand sum	352	Grand mean	17.6			
				Rel Std Dev		

				Rel Sta Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	17.9	1.79	1.34	7.60	
Between Run	1.48	0.16	0.00	0.00	
Total	19.4		1.34	7.60	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	146	163	154	73.6	73.6	4.76E+04
2	138	158	148	95.2	95.2	4.38E+04
3	129	138	134	19.7	19.7	3.57E+04
4	148	160	154	32.4	32.4	4.74E+04
5	147	160	153	37.7	37.7	4.70E+04
6	146	163	155	74.2	74.2	4.78E+04
7	141	155	148	49.9	49.9	4.40E+04
8	152	159	155	11.2	11.2	4.83E+04
9	141	166	154	164	164	4.72E+04
10	149	161	155	34.3	34.3	4.78E+04
Grand sum	3.02E+03	Grand mean	151			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	1.18E+03	118	10.9	7.21		
Between Run	791	87.9	0.00	0.00		
Total	1.97E+03		10.9	7.21		

Analyte:	CYMA					
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	4.28	5.00	4.64	0.13	0.13	43.1
2	4.24	5.23	4.74	0.25	0.25	44.8
3	4.44	5.58	5.01	0.32	0.32	50.2
4	5.15	5.11	5.13	0.00	0.00	52.6
5	5.49	5.3	5.40	0.01	0.01	58.2
6	4.92	4.86	4.89	0.00	0.00	47.8
7	5.23	5.52	5.38	0.02	0.02	57.8
8	5.01	5.21	5.11	0.01	0.01	52.2
9	5.00	4.20	4.60	0.16	0.16	42.3
10	4.74	5.02	4.88	0.02	0.02	47.6
Grand sum	99.5	Grand mean	4.98			
				Rel Std Dev		
	Sum couproc	Moon Sa Error	Std Dov	(%)		

	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	1.84	0.18	0.43	8.62	
Between Run	1.41	0.16	0.00	0.00	
Total	3.25		0.43	8.62	

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	155	161	158	9.7	9.7	5.01E+04
2	157	167	162	20.4	20.4	5.25E+04
3	161	167	164	9.15	9.15	5.35E+04
4	163	171	167	14.8	14.8	5.59E+04
5	156	173	164	68.0	68.0	5.41E+04
6	160	163	161	1.24	1.24	5.21E+04
7	159	164	161	5.76	5.76	5.20E+04
8	156	177	166	115	115	5.53E+04
9	151	172	161	110	110	5.19E+04
10	148	171	160	136	136	5.09E+04
Grand sum	3.25E+03	Grand mean	163			
				Rel Std Dev		

				nei stu b
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	980	98.0	9.90	6.09
Between Run	144	16.1	0.00	0.00
Total	1.12E+03		9.90	6.09

Analyte:

MHB3

Quality material 1 Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	5.24	4.85	5.05	0.04	0.04	50.9
2	5.00	5.19	5.10	0.01	0.01	51.9
3	4.58	4.54	4.56	0.00	0.00	41.6
4	4.25	4.53	4.39	0.02	0.02	38.5
5	3.49	2.88	3.19	0.09	0.09	20.3
6	4.61	4.19	4.40	0.04	0.04	38.7
7	4.43	4.90	4.67	0.06	0.06	43.5
8	4.52	4.86	4.69	0.03	0.03	44.0
9	4.22	3.83	4.03	0.04	0.04	32.4
10	4.46	4.27	4.37	0.01	0.01	38.1
Grand sum	88.8	Grand mean	4.44			
				Rel Std Dev		

	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	0.67	0.07	0.26	5.83	
Between Run	5.36	0.60	0.51	11.6	
Total	6.03		0.58	13.0	

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	33.4	35.7	34.6	1.36	1.36	2.39E+03
2	32.4	35.7	34.0	2.58	2.58	2.32E+03
3	28.6	32.2	30.4	3.19	3.19	1.85E+03
4	32.7	34.2	33.4	0.54	0.54	2.24E+03
5	34.5	33.9	34.2	0.09	0.09	2.33E+03
6	33.6	33.0	33.3	0.09	0.09	2.22E+03
7	32.1	33.7	32.9	0.60	0.60	2.16E+03
8	31.1	36.7	33.9	7.92	7.92	2.30E+03
9	32.6	36.0	34.3	2.94	2.94	2.35E+03
10	31.9	36.1	34.0	4.47	4.47	2.31E+03
Grand sum	670	Grand mean	33.5			

ares Mean Sq		4 - 43
ines inicali sq	Error Std Dev	/ (%)
4.76	2.18	6.51
2.90	0.00	0.00
	2.18	6.51
		2.90 0.00

Analyte: HPMM

Quality material 1	L					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	87.4	99.8	93.6	38.4	38.4	1.75E+04
2	95.1	103	99.1	15.8	15.8	1.96E+04
3	80.5	99.5	90.0	90.1	90.1	1.62E+04
4	91.3	94.6	92.9	2.72	2.72	1.73E+04
5	95.8	97.3	96.5	0.50	0.50	1.86E+04
6	89.4	104	96.6	52.1	52.1	1.87E+04
7	96.1	103	99.4	10.7	10.7	1.98E+04
8	90.1	97.4	93.8	13.2	13.2	1.76E+04
9	95.5	90.0	92.8	7.51	7.51	1.72E+04
10	92.8	100	96.5	13.4	13.4	1.86E+04
Grand sum	1.90E+03	Grand mean	95.1			
				Rel Std Dev		

				Rei Stu Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	489	48.9	6.99	7.35
Between Run	161	17.9	0.00	0.00
Total	650		6.99	7.35

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	909	1.04E+03	976	4.44E+03	4.44E+03	1.90E+06
2	958	1.00E+03	982	5.39E+02	5.39E+02	1.93E+06
3	955	879	917	1.44E+03	1.44E+03	1.68E+06
4	889	945	917	7.79E+02	7.79E+02	1.68E+06
5	868	964	916	2.31E+03	2.31E+03	1.68E+06
6	892	947	919	7.73E+02	7.73E+02	1.69E+06
7	910	956	933	5.34E+02	5.34E+02	1.74E+06
8	896	963	930	1.14E+03	1.14E+03	1.73E+06
9	932	1.00E+03	966	1.15E+03	1.15E+03	1.87E+06
10	968	1.00E+03	986	3.32E+02	3.32E+02	1.95E+06
Grand sum	1.89E+04	Grand mean	944			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	2.69E+04	2.69E+03	51.8	5.49		
Between Run	1.57E+04	1.74E+03	0.00	0.00		
Total	4.26E+04		51.8	5.49		

Analyte:	PHGA					
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	14.8	16.2	15.5	0.53	0.53	480
2	21.2	21.6	21.4	0.03	0.03	915
3	17.4	16.0	16.7	0.53	0.53	557
4	16.6	17.2	16.9	0.07	0.07	572
5	18.7	20.1	19.4	0.52	0.52	751
6	17.1	17.7	17.4	0.10	0.10	603
7	16.4	15.2	15.8	0.40	0.40	499
8	14.6	16.4	15.5	0.82	0.82	482
9	18.6	16.8	17.7	0.79	0.79	625
10	15.0	14.8	14.9	0.00	0.00	443
Grand sum	342	Grand mean	17.1			

				Rel Std Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	7.56	0.76	0.87	5.08	
Between Run	71.8	7.97	1.90	11.1	
Total	79.3		2.09	12.2	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	364	400	382	320	320	2.92E+05
2	404	420	412	60.1	60.1	3.40E+05
3	363	413	388	614	614	3.01E+05
4	462	494	478	256	256	4.56E+05
5	488	524	506	315	315	5.12E+05
6	355	379	367	148	148	2.70E+05
7	413	428	421	51.2	51.2	3.54E+05
8	492	525	508	270	270	5.17E+05
9	487	494	490	13.4	13.4	4.81E+05
10	509	447	478	946	946	4.57E+05
Grand sum	8.86E+03	Grand mean	443			
				Rel Std Dev		

				ner ota b
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	5.99E+03	599	24.5	5.52
Between Run	5.37E+04	5.96E+03	51.8	11.7
Total	5.97E+04		57.3	12.9

Analyte:

e: IPM3

Quality material 1						
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
C17206	3.21	2.99	3.10	0.01	0.01	19.2
A17206	3.52	2.34	2.93	0.35	0.35	17.1
P17206	2.81	2.75	2.78	0.00	0.00	15.4
C17207	3.01	3.13	3.07	0.00	0.00	18.9
A17207	3.05	3.20	3.12	0.01	0.01	19.5
P17207	2.94	3.00	2.97	0.00	0.00	17.7
C17213	2.84	2.96	2.90	0.00	0.00	16.8
A17213	2.60	2.88	2.74	0.02	0.02	15.0
P17213	3.21	3.20	3.21	0.00	0.00	20.6
P17214	3.07	3.14	3.10	0.00	0.00	19.3
Grand sum	59.8	Grand mean	2.99			
				Rel Std Dev		

				Rel Sta Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	0.80	0.08	0.28	9.45	
Between Run	0.44	0.05	0.00	0.00	
Total	1.24		0.28	9.45	

Quality material 2						
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	43.9	47.7	45.8	3.72	3.72	4.20E+03
2	43.4	47.3	45.4	3.69	3.69	4.11E+03
3	41.5	40.2	40.9	0.38	0.38	3.34E+03
4	46.7	47.2	47.0	0.08	0.08	4.41E+03
5	40.0	44.7	42.3	5.66	5.66	3.59E+03
6	41.7	43.4	42.6	0.75	0.75	3.62E+03
7	43.0	46.7	44.8	3.40	3.40	4.01E+03
8	44.5	44.8	44.6	0.02	0.02	3.98E+03
9	43.9	46.0	45.0	1.06	1.06	4.04E+03
10	39.6	47.4	43.5	15.3	15.3	3.78E+03
Grand sum	883	Grand mean	44.2			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	68.1	6.81	2.61	5.91
Between Run	61.0	6.77	0.00	0.00
Total	129		2.61	5.91

Analyte: 2MHA

Quality material	L					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	30.4	35.2	32.8	5.81	5.81	2.16E+03
2	33.4	30.1	31.7	2.64	2.64	2.01E+03
3	31.9	38.9	35.4	12.5	12.5	2.50E+03
4	29.2	27.9	28.5	0.44	0.44	1.63E+03
5	29.4	32.6	31.0	2.50	2.50	1.92E+03
6	26.9	33.3	30.1	9.95	9.95	1.81E+03
7	29.5	26.9	28.2	1.69	1.69	1.59E+03
8	30.4	32.5	31.4	1.19	1.19	1.98E+03
9	31.0	29.3	30.1	0.75	0.75	1.82E+03
10	31.2	31.6	31.4	0.04	0.04	1.97E+03
Grand sum	621	Grand mean	31.1			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	74.9	7.49	2.74	8.81
Between Run	77.3	8.59	0.74	2.38
Total	152		2.84	9.13

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	295	270	283	160	160	1.60E+05
2	284	276	280	18.6	18.6	1.57E+05
3	259	272	266	41.5	41.5	1.41E+05
4	253	281	267	192	192	1.43E+05
5	263	270	266	11.7	11.7	1.42E+05
6	256	279	268	142	142	1.43E+05
7	277	270	274	9.99	9.99	1.50E+05
8	263	273	268	26.0	26.0	1.43E+05
9	290	330	310	407	407	1.92E+05
10	299	320	310	111	111	1.92E+05
Grand sum	5.58E+03	Grand mean	279			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	2.24E+03	224	15.0	5.36		
Between Run	5.38E+03	598	13.7	4.90		
Total	7.62E+03		20.3	7.27		

Analyte:	BPMA					
,						
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	5.27	5.89	5.58	0.10	0.10	62.3
2	5.11	6.84	5.98	0.75	0.75	71.4
3	5.94	6.92	6.43	0.24	0.24	82.7
4	4.96	6.28	5.62	0.44	0.44	63.2
5	6.96	6.25	6.61	0.13	0.13	87.3
6	5.56	6.01	5.79	0.05	0.05	66.9
7	4.77	5.78	5.28	0.26	0.26	55.7
8	7.00	6.27	6.64	0.13	0.13	88.0
9	7.99	6.30	7.15	0.71	0.71	102
10	8.23	6.52	7.38	0.73	0.73	109
Grand sum	125	Grand mean	6.24			

				Rel Std Dev	
	Sum squares	Mean Sq Error	Std Dev	(%)	
Within Run	7.06	0.71	0.84	13.5	
Between Run	8.92	0.99	0.38	6.05	
Total	16.0		0.92	14.8	

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	173	180	177	9.70	9.70	6.24E+04
2	173	179	176	9.77	9.77	6.22E+04
3	163	174	169	30.3	30.3	5.69E+04
4	182	214	198	270	270	7.84E+04
5	199	200	200	0.27	0.27	7.97E+04
6	192	205	198	43.1	43.1	7.87E+04
7	172	190	181	84.0	84.0	6.56E+04
8	196	195	195	0.28	0.28	7.61E+04
9	221	256	239	297	297	1.14E+05
10	221	226	224	6.63	6.63	1.00E+05
Grand sum	3.91E+03	Grand mean	196			
				Rel Std Dev		

	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	1.50E+03	150	12.2	6.26
Between Run	8.67E+03	963	20.2	10.3
Total	1.02E+04		23.6	12.1

Analyte:

Between Run Total

312

617

34.7

34MH

Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	87.3	91.1	89.2	3.71	3.71	1.59E+04
2	88.7	92.2	90.5	3.13	3.13	1.64E+04
3	90.6	91.4	91.0	0.16	0.16	1.66E+04
4	83.3	92.1	87.7	19.4	19.4	1.54E+04
5	84.8	91.6	88.2	11.3	11.3	1.56E+04
6	84.1	86.9	85.5	1.90	1.90	1.46E+04
7	81.7	95.0	88.4	44.6	44.6	1.56E+04
8	86.9	96.0	91.4	20.5	20.5	1.67E+04
9	82.3	72.8	77.5	22.5	22.5	1.20E+04
10	79.0	89.0	84.0	25.1	25.1	1.41E+04
Grand sum	1.75E+03	Grand mean	87.3			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	304	30.4	5.52	6.32		

1.46 5.71

1.67

6.54

Γ

		_				
Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	598	626	612	1.94E+02	1.94E+02	7.50E+05
2	589	684	636	2.28E+03	2.28E+03	8.10E+05
3	616	580	598	3.27E+02	3.27E+02	7.15E+05
4	592	665	628	1.34E+03	1.34E+03	7.90E+05
5	586	644	615	8.52E+02	8.52E+02	7.57E+05
6	603	652	628	6.10E+02	6.10E+02	7.88E+05
7	591	665	628	1.36E+03	1.36E+03	7.89E+05
8	601	657	629	7.76E+02	7.76E+02	7.91E+05
9	593	647	620	7.30E+02	7.30E+02	7.70E+05
10	592	613	602	1.08E+02	1.08E+02	7.26E+05
Grand sum	1.24E+04	Grand mean	620			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	1.72E+04	1.72E+03	41.4	6.68
Between Run	2.86E+03	318	0.00	0.00
Total	2.00E+04		41.4	6.68

Analyte: PHEM

Quality materia	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	4.77	5.12	4.95	0.03	0.03	48.9
2	5.62	6.15	5.89	0.07	0.07	69.3
3	4.86	5.26	5.06	0.04	0.04	51.2
4	4.90	5.63	5.27	0.13	0.13	55.4
5	4.75	5.39	5.07	0.10	0.10	51.4
6	5.57	5.22	5.40	0.03	0.03	58.2
7	4.71	5.01	4.86	0.02	0.02	47.2
8	5.26	5.20	5.23	0.00	0.00	54.7
9	4.96	4.40	4.68	0.08	0.08	43.8
10	5.10	5.29	5.20	0.01	0.01	54.0
Grand sum	103	Grand mean	5.16			
				Rel Std Dev		
	c		Chil Davi	(0/)		

	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	1.04	0.10	0.32	6.24
Between Run	1.97	0.22	0.24	4.64
Total	3.00		0.40	7.78

Quality material 2	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	50.0	54.0	52.0	4.00	4.00	5.40E+03
2	57.0	59.4	58.2	1.50	1.50	6.78E+03
3	51.6	51.2	51.4	0.04	0.04	5.28E+03
4	50.2	52.9	51.5	1.89	1.89	5.31E+03
5	49.8	55.0	52.4	6.86	6.86	5.49E+03
6	55.8	54.1	55.0	0.71	0.71	6.05E+03
7	49.9	52.1	51.0	1.23	1.23	5.20E+03
8	52.3	57.9	55.1	7.73	7.73	6.07E+03
9	51.0	52.3	51.6	0.42	0.42	5.33E+03
10	50.1	51.8	50.9	0.74	0.74	5.19E+03
Grand sum	1.06E+03	Grand mean	52.9			
				Rel Std Dev		
	Sum squares	Mean Sq Error	Std Dev	(%)		
Within Run	50.2	5.02	2.24	4.24		
Between Run	103	11.5	1.79	3.39		
Total	153		2.87	5.43		

Analyte:	BMA					
Quality material	1					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	4.01	4.13	4.07	0.00	0.00	33.1
2	3.84	4.51	4.18	0.11	0.11	34.9
3	4.69	4.11	4.40	0.08	0.08	38.7
4	3.96	4.54	4.25	0.08	0.08	36.1
5	3.81	4.18	4.00	0.03	0.03	31.9
6	3.81	4.35	4.08	0.07	0.07	33.3
7	3.82	3.91	3.87	0.00	0.00	29.9
8	3.65	4.90	4.28	0.39	0.39	36.6
9	4.17	3.60	3.89	0.08	0.08	30.2
10	3.86	4.27	4.07	0.04	0.04	33.0
Grand sum	82.1	Grand mean	4.11			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	1.81	0.18	0.43	10.4
Between Run	0.53	0.06	0.00	0.00
Total	2.34		0.43	10.4

Quality material	2					
Run	Result 1	Result 2	Mean	SS 1	SS 2	2*mean^2
1	37.9	40.6	39.3	1.85	1.85	3.08E+03
2	37.0	41.8	39.4	5.83	5.83	3.11E+03
3	33.7	41.8	37.8	16.4	16.4	2.85E+03
4	40.3	42.0	41.2	0.73	0.73	3.39E+03
5	35.7	42.9	39.3	12.9	12.9	3.09E+03
6	37.5	44.4	41.0	12.0	12.0	3.36E+03
7	37.8	47.5	42.7	23.5	23.5	3.64E+03
8	40.5	39.6	40.0	0.22	0.22	3.21E+03
9	38.9	42.8	40.9	3.86	3.86	3.34E+03
10	40.0	40.9	40.5	0.19	0.19	3.27E+03
Grand sum	804	Grand mean	40.2			

				Rel Std Dev
	Sum squares	Mean Sq Error	Std Dev	(%)
Within Run	155	15.5	3.94	9.80
Between Run	32.8	3.65	0.00	0.00
Total	188		3.94	9.80

Table C3. Stability

Stability - fill in yellow shaded cells

The initial measurement can be from the same day for all stability experiments.

Freeze and thaw st	ability = Assess for a minimum of 3 freeze-thaw cycles; conditions should mimic intended sample handling conditions
Condition:	Three times frozen at -80°C and then thawed (3 freeze-thaw cycles, in-house spiked samples)
Bench-top stability	r = Assess short-term stability for length of time needed to handle study samples (typically at room temperature)
Condition:	Original samples (not yet prepared for instrument analysis) stored at room temperature for 1 day
Processed sample	stability = Assess short-term stability of processed samples, including resident time in autosampler
Condition:	Processed samples (ready for instrument analysis) stored at room temperature for 1 day
Long-term stability	r = Assess long-term stability that equals or exceeds time between date of first sample collection and date of last sample analysis
Condition:	Samples stored at -80°C for 2 years (QCL261722 and QCH261735)

All stability sample results should be within ±15% of nominal concentration

Method name:	VOC metaboli	tes in urine	
Method #:	2103a adjuste	d to 96-well plate (7	mm cap mat cover)
Matrix:	Urine		
Units:	μg/L		
Analyte:	CEMA		

Quality material 1	P17199	P17202	P17199	P17201	C17228	C17229	A17194 & P17194	P19196
Quality material 1	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-ter
	measurement	thaw cycles	measuremen		measurement	sample stability	measurement	Ũ
Replicate 1	24.9	26.2	24.9	28.1	29.1	25.7	48.4	51.5
Replicate 2	27.9	26.2	27.9	25.4	30.1	27.7	54.1	50.7
Replicate 3	25.9	27.2	25.9	29.0	28.9	25.7	49.4	50.9
Mean	26.2	26.5	26.2	27.5	29.4	26.4	50.6	51.0
% difference from initial measurement		1.28		5.04		-10.1		0.75

Quality material 2	P17199	P17202	P17199	P17201	C17228	C17229	A17194 & P17194	P19196
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	260	250	260	285	262	270	514	532
Replicate 2	265	257	265	275	269	263	585	548
Replicate 3	276	266	276	275	271	284	513	540
Mean	267	258	267	279	267	273	537	540
% difference from initial measurement		-3.56		4.31		1.90		0.51

Analyte:

ATCA

Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	47.0	45.7	47.0	34.9	38.2	42.2	96.9	92.0
Replicate 2	35.8	47.0	35.8	44.7	48.6	34.2	105	103
Replicate 3	46.1	35.1	46.1	47.6	43.7	40.1	102	96.1
Mean	43.0	42.6	43.0	42.4	43.5	38.8	101	96.9
% difference from initial measurement		-0.82		-1.35		-10.7		-4.39

Quality material 2								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	451	419	451	431	381	367	1040	1030
Replicate 2	444	440	444	451	353	386	977	1080
Replicate 3	446	390	446	443	441	395	997	1060
Mean	447	416	447	442	392	383	1005	1057
% difference from initial measurement		-6.80		-1.09		-2.32		5.15

Analyte:	GAMA							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial		Initial	Long-term
Replicate 1	measurement 26.1	26.3	measurement 26.1	stability 29.7	29.9	nent sample stability 27.7	measurement 30.0	29.7
Replicate 2	28.3	25.9	28.3	28.0	32.3	26.2	34.0	28.5
Replicate 3	27.1	28.5	27.1	26.9	27.2	27.5	30.4	30.8
Maan	27.2	26.9	27.2	28.2	29.8	27.1	21 5	29.7
Mean % difference from	27.2		21.2		29.8		31.5	
initial measurement		-1.05		3.85		-8.92		-5.70
Quality material 2								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement			nent sample stability	measurement	
Replicate 1	267	254	267	273	284	290	309	284
Replicate 2	266	269	266	286	264	255	327	303
Replicate 3	262	272	262	268	274	282	299	284
Mean	265	265	265	276	274	276	312	290
% difference from		-0.06		3.95		0.62		-6.81
initial measurement		0.00		3.55		0.02		0.01
Analyte:	AAMA							
Quality material 1								
Quality material 1	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement			ent sample stability	measurement	-
Replicate 1	4.75	4.57	4.75	5.12	5.47	4.84	13.5	14.9
Replicate 2	5.11	5.16	5.11	4.57	5.56	5.75	15.1	13.7
Replicate 3	5.36	5.54	5.36	4.73	5.73	4.30	15.1	13.9
Mean	5.07	5.09	5.07	4.81	5.59	4.96	14.6	14.2
% difference from	5.07		5107		5.05		110	
initial measurement		0.34		-5.28		-11.2		-3.01
Quality material 2								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement			ent sample stability	measurement	
Replicate 1	49.4	49.7	49.4	52.1	46.8	49.3	101	108
Replicate 2 Replicate 3	49.8 51.6	48.6 48.2	49.8 51.6	54.3 53.2	48.3 50.8	44.6 50.1	108 114	114 111
Replicate 5	51.0	40.2	51.0	33.2	50.0	50.1	114	111
Mean	50.2	48.8	50.2	53.2	48.6	48.0	108	111
% difference from		-2.79		5.95		-1.34		3.04
initial measurement								
Analyte:	HEMA							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial		Initial	Long-term
De aliante d	measurement		measurement			ent sample stability		
Replicate 1 Replicate 2	1.48 2.26	1.69 1.64	1.48 2.26	2.20 2.14	1.85 1.77	1.74 2.00	3.83 4.88	4.61 4.74
Replicate 3	1.62	1.86	1.62	2.14 1.46	1.77	1.53	4.88	4.74 5.76
Moon	1 70						4.32	
Mean % difference from	1.79	1.73	1.79	1.93	1.79	1.75	4.33	5.04
initial measurement		-3.21		8.26		-1.79		16.4
Quality material 2								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement			nent sample stability		-
Replicate 1	16.5	15.8	16.5	18.4	16.8	15.9	45.9	48.2
Replicate 2	17.8	17.9	17.8	16.8	15.6	17.9	44.9	54.3
Replicate 3	17.8	16.0	17.8	17.0	17.1	17.4	46.0	50.5
Mean	17.4	16.6	17.4	17.4	16.5	17.1	45.6	51.0
% difference from initial measurement		-4.59		0.27		3.50		11.9

Analyte:	DHBM								
Quality material 1									
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement		measurement	stability			sample stability	measurement	-
Replicate 1	17.2	20.5	17.2	20.9		16.7	15.4	117	118
Replicate 2	16.9	18.1	16.9	17.8		17.3	21.1	145	123
Replicate 3	17.6	16.7	17.6	17.6		19.1	19.6	129	134
Mean	17.2	18.4	17.2	18.8		17.7	18.7	130	125
% difference from		7.10		9.00			5.57		-3.76
initial measurement				5100			0.07		0.70
Quality material 2									
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability		measurement	sample stability	measurement	stability
Replicate 1	181	180	181	191		181	186	392	400
Replicate 2	185	185	185	191		184	183	455	426
Replicate 3	185	185	185	180		186	186	403	402
Mean	184	183	184	187		184	185	417	409
% difference from		-0.11		2.11			0.77		-1.81
initial measurement		-0.11		2.11			0.77		-1.01
Analyte:	СҮНА								
Quality material 1									
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability		measurement	sample stability	measurement	stability
Replicate 1	13.0	12.1	13.0	12.0		13.3	11.4	7.61	6.26
Replicate 2	11.3	12.3	11.3	12.6		13.3	12.4	6.40	7.19
Replicate 3	12.7	13.7	12.7	13.2		12.8	12.3	7.25	8.22
Mean	12.3	12.7	12.3	12.6		13.1	12.0	7.09	7.22
% difference from	12.5		12.5			15.1		7.05	
initial measurement		3.26		2.32			-8.59		1.91
Quality material 2									
Quality material 2	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability		measurement	sample stability	measurement	-
Replicate 1	123	125	123	120		120	117	88.8	89.5
Replicate 2	122	129	122	117		117	116	99.8	98.2
Replicate 3	123	132	123	129		129	125	92.6	94.9
	400	120	122	422		122	110	oo 7	
Mean % difference from	123	129	123	122		122	119	93.7	94.2
initial measurement		4.78		-0.69			-2.59		0.51
Analyte:	AMCA								
					-				
Quality material 1	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
							sample stability		
Replicate 1	measurement 16.3	15.7	measurement 16.3	stability 19.0		14.7	15.6	measurement 28.3	29.1
Replicate 2	20.5	20.5	20.5	19.0		14.7	15.0	33.0	29.1
Replicate 3		14.9	16.2	15.1		16.9	16.6	31.7	30.1
	16.2	14.5							
Mean						17.0	16 1	31.0	28.7
Mean % difference from	17.7	17.0	17.7	16.8		17.0	16.1	31.0	28.7
	17.7					17.0	16.1 -5.34	31.0 	28.7 -7.38
% difference from initial measurement	17.7	17.0		16.8		17.0 		31.0 	
% difference from	17.7 	17.0		16.8 -5.03		17.0 	-5.34		-7.38
% difference from initial measurement	17.7 Initial	17.0 -3.65 Three freeze-	17.7 Initial	16.8 -5.03 Bench-top		 Initial	-5.34 Processed	 Initial	-7.38 Long-term
% difference from initial measurement Quality material 2	17.7 Initial measurement	17.0 -3.65 Three freeze- thaw cycles	17.7 Initial measurement	16.8 -5.03 Bench-top stability		 Initial measurement	-5.34 Processed sample stability	 Initial measurement	-7.38 Long-term stability
% difference from initial measurement Quality material 2 Replicate 1	17.7 Initial measurement 173	17.0 -3.65 Three freeze- thaw cycles 154	17.7 Initial measurement 173	16.8 -5.03 Bench-top stability 165		Initial measurement 157	-5.34 Processed sample stability 154	Initial measurement 399	-7.38 Long-term stability 341
% difference from initial measurement Quality material 2	17.7 Initial measurement	17.0 -3.65 Three freeze- thaw cycles	17.7 Initial measurement	16.8 -5.03 Bench-top stability		 Initial measurement	-5.34 Processed sample stability	 Initial measurement	-7.38 Long-term stability
% difference from initial measurement Quality material 2 Replicate 1 Replicate 2 Replicate 3	17.7 neasurement 173 165	17.0 -3.65 Three freeze- thaw cycles 154 166 151	17.7 neasurement 173 157 165	16.8 -5.03 Bench-top stability 165 165 165		Initial measurement 157 154 165	-5.34 Processed sample stability 154 153 162	Initial measurement 399 411 331	-7.38 Long-term stability 341 380 353
% difference from initial measurement Quality material 2 Replicate 1 Replicate 2	17.7 Initial measurement 173 157	17.0 -3.65 Three freeze- thaw cycles 154 166	17.7 Initial measurement 173 157	16.8 -5.03 Bench-top stability 165 165		Initial measurement 157 154	-5.34 Processed sample stability 154 153	Initial measurement 399 411	-7.38 Long-term stability 341 380

Analyte:	TTCA									
Quality material 1										
	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement			measurement				sample stability	measurement	-
Replicate 1	58.9	60.7		58.9	56.1		57.0	50.5	41.9	50.1
Replicate 2	64.9	55.6		64.9	55.5		54.7	51.2	58.9	45.1
Replicate 3	66.7	60.7		66.7	59.3		56.1	44.8	44.1	54.5
Mean	63.5	59.0		63.5	57.0		55.9	48.8	48.3	49.9
% difference from		7.42			40.0					
initial measurement		-7.13			-10.3			-12.7		3.28
Quality material 2										
	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement	thaw cycles		measurement	stability		measurement	sample stability	measurement	stability
Replicate 1	646	535		646	574		542	496	763	634
Replicate 2	605	533		605	538		534	451	733	753
Replicate 3	636	549		636	574		559	509	749	636
Mean	629	539		629	562		545	485	748	675
% difference from										
initial measurement		-14.3			-10.6			-11.0		-9.85
Analyte:	HPMA									
Quality material 1										
	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement			measurement	-			sample stability	measurement	-
Replicate 1	57.7	63.7		57.7	57.7		56.0	51.8	76.1	79.2
Replicate 2	56.0	55.0		56.0	58.8		59.1	50.6	80.3	83.3
Replicate 3	58.9	54.3		58.9	56.3		56.8	52.7	79.1	87.0
Mean	57.5	57.6		57.5	57.6		57.3	51.7	78.5	83.2
% difference from initial measurement		0.21			0.13			-9.82		5.96
				-			-			
Quality material 2	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement			measurement	-			sample stability	measurement	-
Replicate 1	584	574		584	596		511	496	701	857
Replicate 2	584	569		584	610		493	496	833	906
Replicate 3	593	565		593	586		522	500	814	871
hepheate 5	555	505		555	500		JLL	500	014	0/1
Mean	587	569		587	597		509	497	783	878
% difference from initial measurement		-3.02			1.75			-2.26		12.2
Analyte:	MADA									
			_			_				
Quality material 1		-								
	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement			measurement				sample stability	measurement	-
Replicate 1	48.0	51.0		48.0	53.7		51.3	46.0	103	87.8
Replicate 2	47.1	47.1		47.1	63.4		62.0	58.5	105	99.3
Replicate 3	45.8	56.2		45.8	34.8		48.2	51.1	108	103
Mean	47.0	51.4		47.0	50.6		53.9	51.9	105	96.6
% difference from		9.55			7.84			-3.66		-8.43
initial measurement										
Quality material 2										
	Initial	Three freeze-		Initial	Bench-top		Initial	Processed	Initial	Long-term
	measurement			measurement	-			sample stability	measurement	
Replicate 1	516	474		516	550		536	524	1034	878
Replicate 2	577	516		577	540		559	522	993	1120
Replicate 3	559	533		559	565		529	537	935	1010
Mean % difference from	551	507		551	551		541	528	987	1003
initial measurement		-7.85			0.14			-2.54		1.59
eusurement						_				

nessurement tstaliny logicate 1 nessurement 12.5 staliny 12.4 nessurement 12.5 staliny 12.7 nessurement 12.2 staliny 12.7 nessurement 12.2 staliny 12.7 nessurement 12.2 staliny 12.7 nessurement 12.2 nessurement 12.7 nessurement 12.8 nessu	Analyte:	HPM2								
measurement the workes neasurement stability measurement stability	Quality material 1									
Image 12.4 12.4 12.4 12.4 12.4 12.4 12.0 12.4 12.4 12.4 12.0 12.4 12.4 12.4 12.0 12.4 12.4 12.4 12.4 12.4 12.4 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.8 12.7 12.8 12.7 12.8 12.8 12.6 12.7 12.8 <th12.8< th=""> 12.8 12.8 <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>Long-term</td></th<></th12.8<>					-					Long-term
Replicite 2 12.2 12.0 12.2 13.8 12.5 12.4 12.6					-					-
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Mean 12.2 12.1 12.2 12.1 13.0 11.9 17.9 15.8 Widtference from initial measurement -1.00 0.85 6.22 Coality material Z Replicate 1 Initial to support Initia										
Sufficience from initial measurement, thild an easurement, sequence is the resurement, sequence is the resureme	Replicate 3	11./	11.9	11./	12.2		12.9	11.2	16.7	16.8
Initial measurement Initial measurement Initial measurement Processed measurement Initial measurement Initial measurement Initial measurement Initial measur	Mean	12.2	12.1	12.2	12.1		13.0	11.9	17.9	16.8
Initial measurement Initial answerement Processed measurement Initial selection of the stability selection of the stability in the	% difference from		1 10		0.95			9 46		6 22
Initial Replicate 1 Initial 44 Initial 134 Initial 144 Initial 144 Initial 145 Initial 146 Initial 146 <td>initial measurement</td> <td></td> <td>-1.10</td> <td></td> <td>-0.85</td> <td></td> <td></td> <td>-8.40</td> <td></td> <td>-0.22</td>	initial measurement		-1.10		-0.85			-8.40		-0.22
Initial Replicate 1 Initial 44 Initial 134 Initial 134 Replicate 135 Initial 134 Resume 135 Initial 136 Resume 133 Initial 133 Initial 136 Initial 136 <td>Quality material 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Quality material 2									
measurementthuw yetesmeasurementstabilitymeasurementsample stabilitymeasurementsample stabilityReplicate 24413413414438223126133145Replicate 244134144146133142150158138Warm42134142143165133142158138Warm14142143165133142158138Warm14142143165130158138Warm14142143158137158138Warm14142143158138158138Warm144142143158138158138Warm2.152.542.542.552.511482.25Replicate 12.152.542.542.552.611854.68Sufference from2.552.552.552.552.54158146Mean2.532.452.532.532.542.54158146156146Sufference from1481462.552.552.54158146Replicate 12.532.452.532.552.542.54158146156Marm2.532.452.532.542.552.54158	~	Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
Image Image <th< td=""><td></td><td>measurement</td><td>thaw cycles</td><td>measurement</td><td>-</td><td></td><td>measurement</td><td>sample stability</td><td>measurement</td><td></td></th<>		measurement	thaw cycles	measurement	-		measurement	sample stability	measurement	
Replicate 3 141 155 141 165 133 142 150 134 Mean 142 134 142 143 125 130 158 138 Sufference from initial measurement 6.89 4.03 125 Quality material 1 Ditial measurement Three freeze- tablity Initial 2.55 2.94 2.15 2.31 2.88 2.256 1.85 2.65 1.11 0.92 4.47 Replicate 1 2.53 2.34 2.99 2.21 2.66 2.21 2.66 2.21 2.61 4.68 Wean 2.33 2.39 2.33 2.39 2.36 2.21 5.59 1.118 Replicate 2 2.53 2.56 2.53 2.56 2.46 2.20 2.51 4.68 Wean Three freeze- measurement Initial measurement Replicate 2 2.53 2.56 2.46 2.20 2.51 4.68 Replica	Replicate 1	144	132	144	146		120	122	161	136
Main Matheman Mathema M	Replicate 2	141	134	141	138		123	126	163	145
Stafference from initial measurement 5.70 0.89 4.03 12.5 Analyte: CYMA CYMA 0.89 Initial measurement Initial measurement<	Replicate 3	141	135	141	145		133	142	150	134
Stafference from initial measurement 5.70 0.89 4.03 12.5 Analyte: CYMA CYMA 0.89 Initial measurement Initial measurement<	Mean	142	134	142	143		125	130	158	138
Initial measurement Crivial Dressurement Initial Processed Initial Initial Processed Initial Initial Initial Processed Initial Initial Initial Processed Initial Initial <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Quality material 1 measurement Replicate 1 Initial 215 Three freeze- measurement 2.33 Initial 2.99 Initial 2.44 Bench-top 2.39 Initial 2.39 Processed 2.34 Initial 2.39 Congreter measurement 2.33 Initial 2.39 Initial 2.39 Initial 2.33 Initial 2.39 Initial 2.33 Initial 2.39 Initial 2.39 Initial 2.33 Initial 2.39 Initial 2.33 Initial 2.39 Initial 2.33 Initial 2.39 Initial 2.33 Initial	initial measurement		-3.70		0.85			4.05	 	-12.5
Initial measurement thaw cycles measurement thaw cycles measurement thaw cycles measurement thaw cycles measurement thaw cycles that ballity 2.15 2.31 2.33Initial 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.59Initial 2.58 2.56Initial 4.62 2.58 2.56Initial 4.62 4.62 4.60Initial 4.62 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.60Initial 4.60Initial 6.61 4.70Initial 4.60Initial 6.61 4.70Initial 4.62Initial 6	Analyte:	СҮМА								
Initial measurement thaw cycles measurement thaw cycles measurement thaw cycles measurement thaw cycles measurement thaw cycles that ballity 2.15 2.31 2.33Initial 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.58 2.58 2.56Initial measurement tability 2.58 2.56Initial measurement tability 2.59Initial 2.58 2.56Initial 4.62 2.58 2.56Initial 4.62 4.62 4.60Initial 4.62 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.62 4.60Initial 4.60Initial 4.60Initial 6.61 4.70Initial 4.60Initial 6.61 4.70Initial 4.62Initial 6	Quality material 1									
Replicate 1 2.15 2.94 2.15 2.33 2.58 2.26 4.82 4.46 Replicate 2 2.44 1.89 2.24 2.65 1.88 2.23 6.11 4.99 4.87 Mean 2.33 2.39 2.33 2.39 2.36 2.21 2.56 2.61 1.85 4.69 4.87 Mean 2.33 2.39 2.33 2.39 2.36 2.21 5.31 4.68 Mean 2.65 2.79 111.8 Cuality material 2 <td></td> <td>Initial</td> <td>Three freeze-</td> <td>Initial</td> <td>Bench-top</td> <td></td> <td>Initial</td> <td>Processed</td> <td>Initial</td> <td>Long-term</td>		Initial	Three freeze-	Initial	Bench-top		Initial	Processed	Initial	Long-term
Replicate 1 Replicate 2 Replicate 2 244 2.15 1.89 2.24 2.24 2.94 2.24 2.15 2.43 2.15 2.44 2.15 2.43 2.15 2.44 2.15 2.43 2.15 2.44 2.15 2.43 2.16 2.61 1.88 2.26 2.61 4.82 4.46 Mean 2.33 2.39 2.33 2.39 2.36 2.21 5.31 4.88 % difference from initial measurement " 2.66 2.79 5.99 1.18 Quality material 2 Replicate 1 Replicate 3 2.5.3 2.4.5 2.5.3 2.5.6 2.4.6 2.0.0 153.5 164 Replicate 3 2.5.3 2.4.5 2.5.3 2.5.6 2.4.6 2.0.0 153.5 164 Mean 2.5.3 2.4.5 2.5.3 2.5.7 2.4.6 2.4.0 153.7 165 Mean 2.5.3 2.4.3 2.5.3 2.5.7 2.4.6 2.4.6 1.0.1 153.7 165 Mean 2.3.3 2.4.3 2.5.3 2.5.7 <		measurement		measurement	-		measurement	sample stability	measurement	-
Replicate 2 2.44 1.89 2.44 2.65 1.88 2.23 6.11 4.70 Replicate 3 2.39 2.34 2.39 2.21 2.61 1.85 4.99 4.87 Mean 2.33 2.39 2.33 2.39 2.36 2.21 5.31 4.68 Kidfference from initial measurement 2.65 2.79 5.99 1.11 4.70 Quality material 2 Initial Three freeze- measurement Initial Bench-top Initial Processed Initial 1.00 Initial Initial Initial Initial Initial Initial Initial 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.64 1.74 1.55 1.65 <td< td=""><td>Replicate 1</td><td></td><td></td><td>2.15</td><td>-</td><td></td><td>2.58</td><td>2.56</td><td></td><td></td></td<>	Replicate 1			2.15	-		2.58	2.56		
Replicate 3 2.39 2.34 2.89 2.21 2.61 1.85 4.99 4.87 Mean 2.33 2.39 2.33 2.39 2.35 2.21 2.65 2.79 5.99 4.87 Mean 2.33 2.39 2.33 2.39 2.36 2.21 5.31 4.68 Súdiference from initial measurement 2.65 2.79 5.99 1.18 Quality material 2	•									
Mean Sdifference from Initial measurement 2.33 2.39 2.36 2.21 5.31 4.68 Sdifference from Initial measurement - 2.65 - 2.79 - 5.99 - 1.18 Quality material 2 Replicate 1 Initial 25.3 2.45 2.55 2.56 2.56 2.56 2.55 2.46 2.30 2.56 1.111 Initial measurement Initial sample stability 155.5 Initial 155.5 Initial 155.5 Initial 165.4 Initial 174 Initial 155.5 Initial 155.5 Initial 165.4 Initial 174 Initial 155.5 Initial 165.4 Initial 174 Initial 155.5 Initial 165.4 Initial 174 Initial 165.4 Initial 174 Initial 165.4 Initial 174 Initial 165.4 Initial 174 Initial 165 Initial 165 Initial 166 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 Initial 174 <thinitial 174<="" th=""> Initial 174 Initial</thinitial>										
% difference from initial measurement 2.65 2.79 9.11.8 Quality material 2 measurement Initial measurement Initial measurement Initial stability 25.3 Bench-top 25.5 Initial 25.3 Processed 25.5 Initial 25.3 Initial measurement Initial mea										
Initial measurement Initial measurement<		2.33	2.39	2.33	2.39		2.36	2.21	5.31	4.68
Initial measurement sample stability Replicate 1 Initial 25.3 Three freeze- tability 25.3 Initial 24.5 Bench-top measurement 25.3 Initial 25.3 Processed 25.5 Initial 25.3 Initia			2.65		2.79			-5.99		-11.8
Initial measurement sample stability Replicate 1 Initial 25.3 Three freeze- tability 25.3 Initial 24.5 Bench-top measurement 25.3 Initial 25.3 Processed 25.5 Initial 25.3 Initial 25.3 Initial 25.3 <thinitial 25.3<="" th=""> <thinitial 25.3<="" th=""> <thinitial 2<="" td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>-</td><td></td><td></td><td></td></thinitial></thinitial></thinitial>						_	-			
measurementthaw cyclesmeasurementstabilitymeasurementsample stabilitymeasurementstabilityReplicate 125.324.525.325.624.623.0153.5164Replicate 225.324.525.323.925.524.9156.4174Replicate 325.324.325.323.925.424.5159168Mean25.324.325.325.125.424.5159168% difference from4.020.783.865.29Analyte:MHB33.865.295.29Analyte:Initial measurementthaw cyclesmeasurementstabilitymeasurementsample stabilitymeasurementsample stabilityReplicate 12.332.832.333.162.482.684.465.30Replicate 22.362.362.362.432.572.384.685.09Replicate 32.362.392.552.772.484.685.09% difference from10.19.3610.28.83Mean2.332.572.332.552.772.484.685.09% difference from10.19.3610.28.83Mean2.332.572.332.552.772.484.685	Quality material 2	Initial	Three freeze	Initial	Ponch ton		Initial	Drococcod	Initial	Long torm
Replicate 1 25.3 24.5 25.3 25.6 24.6 23.0 153.5 164 Replicate 2 25.2 23.8 25.2 25.9 25.5 24.9 165.4 174 Replicate 3 25.3 24.5 25.3 23.9 26.2 25.4 159 165 Mean 25.3 24.3 25.3 25.1 25.4 24.5 159 168 % difference from initial measurement -0.78 -3.86 5.29 Analyte: MHB3 -0.78 -3.86 5.29 Quality material 1 Initial measurement thaw cycles measurement stability measurement stability Replicate 2 2.30 2.48 2.30 2.05 3.25 2.38 4.68 5.29 Mean 2.33 2.57 2.33 2.55 2.77 2.48 4.68 5.09 % difference from initial measurement 10.1 9.36 -10.2 8.83 Replicate 2 2.69 2.59 2.69					-					-
Replicate 2 Replicate 3 25.2 23.8 25.2 25.9 25.5 24.9 165.4 174 Replicate 3 25.3 24.5 25.3 23.9 26.2 25.4 159 165 Mean 25.3 24.3 25.3 25.1 25.4 24.5 159 168 X difference from initial measurement 0.78 5.29 Analyte: MHB3 Initial measurement Initial measurement Initial measurement Initial cong-ter measurement Initial cong-ter measurement Initial cong-ter measurement Replicate 1 2.33 2.83 2.33 3.16 2.48 2.68 4.46 5.30 Replicate 2 2.30 2.48 2.05 3.25 2.39 4.50 4.73 Mean 2.33 2.57 2.33 2.55 2.77 2.48 4.68 5.09 K difference from initial measurement Initial Bench-top 2.36 Initial Processed 2.57 Initial Initial Initial Initial Initial Initial Initia	Poplicato 1		-		-					
Replicate 3 25.3 24.5 25.3 23.9 26.2 25.4 158.7 165 Mean 25.3 24.3 25.3 25.1 25.4 24.5 159 168 % difference from initial measurement -4.02 -0.78 -3.86 5.29 Analyte: MHB3 Initial Three freeze- measurement Initial Bench-top measurement Initial Processed measurement Initial sample stability measurement Initial sample stability 2.33 Initial 3.16 Processed 2.48 Initial 4.68 S.09 Replicate 1 2.33 2.57 2.33 2.55 2.77 2.48 4.68 5.09 % difference from initial measurement 10.1 9.36 -10.2 8.83 Quality material 2 Initial cong-ter measurement Bench-top tability Initial 2.57 Processed 2.38 Initial 4.68 5.09 % difference from initial measurement Three freeze- measurement Initial 2.59 2.57 2.48 4.68 5.09 % difference from initial measurement	•									
Mean 25.3 24.3 25.3 25.1 25.4 24.5 159 168 % difference from initial measurement -4.02 -0.78 -3.86 5.29 Analyte: MHB3 Entitial Bench-top measurement Initial Processed measurement Initial Cong-ter measurement Initial Cong-ter measurement Initial Processed measurement Initial Cong-ter measurement Initial Initial Cong-ter measurement Initial Processed measurement Initial Cong-ter measurement Initial Initial Cong-ter measurement Initial Cong-ter measurement Initial Cong-ter measurement Initial Cong-ter measurement Initial Cong-ter measurement Initial Cong-ter measurement Initial Initial Cong-ter measurement Initial In										
% difference from initial measurement 4.02 0.78 3.86 5.29 Analyte: MHB3	hephote 5	2010	2.115	2010	2010		2012	2011	10017	105
Initial measurement Image: Image		25.3	24.3	25.3	25.1		25.4	24.5	159	168
Analyte:MHB3Quality material 1Initial measurementThree freeze- measurementInitial stabilityBench-top measurementInitial stabilityProcessed measurementInitial stabilityReplicate 12.332.832.333.162.482.684.465.30Replicate 22.302.482.302.053.252.384.685.25Replicate 32.362.392.362.432.572.394.904.73Mean2.332.572.332.552.772.484.685.09% difference from initial measurementThree freeze- measurementInitial measurementBench-top measurementInitial measurementProcessed measurementInitial stabilityQuality material 2Initial D.19.3610.28.83Quality material 2Initial D.92.5.926.929.227.423.234.635.6Replicate 126.925.926.929.227.423.234.635.6Replicate 226.427.926.425.123.524.735.435.9Replicate 325.326.225.327.427.029.031.733.6			-4.02		-0.78			-3.86		5.29
Quality material 1Initial measurementInree freeze- thaw cyclesInitial measurementBench-top stabilityInitial measurementProcessed sample stabilityInitial measurementInitial sample stabilityInitial measurementProcessed stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementProcessed sample stabilityInitial measurementInitial sample stabilityInitial sample stabilityReplicate 1 Replic	Analvte:	МНВЗ								
Initial measurementThree freeze- thaw cyclesInitial measurementBench-top stabilityInitial measurementProcessed sample stabilityInitial measurementI	. ,						-		-	
measurementthaw cyclesmeasurementstabilitymeasurementsample stabilitymeasurementstabilityReplicate 12.332.832.333.162.482.684.465.30Replicate 22.302.482.302.053.252.384.685.25Replicate 32.362.392.362.432.572.394.904.73Mean2.332.572.332.552.772.484.685.09% difference from initial measurement10.19.3610.28.83Quality material 2VInitial measurementBench-top measurementInitial StabilityProcessed measurementInitial sample stabilityMeasurementsample stability measurementInitial measurementInitial measurementBench-top measurementInitial sample stabilityInitial measurementInitial measurementProcessed sample stabilityInitial measurementInitial measurementInitial measurementInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial sample stabilityInitial sample stabilityInitial sample stabilityInitial sample stabilityInitial sample stabilityReplicate 126.427.926.4	Quality material 1									
Replicate 12.332.832.333.162.482.684.465.30Replicate 22.302.482.302.053.252.384.685.25Replicate 32.362.392.362.432.572.394.904.73Mean2.332.572.332.552.772.484.685.09% difference from initial measurement 9.369.3610.28.83 Quality material 2PasterInitial measurementBench-top measurementInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementBench-top measurementInitial measurementProcessed sample stabilityInitial measurementInitial measurementInitial measurementInitial measurementInitial measurementProcessed sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial sample stabilityInitial measurementInitial stabilityInitial sample stabilityInitial measurementInitial stabilityInitial measurementInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stabilityInitial stability<					-					Long-term
Replicate 2 Replicate 32.302.48 2.362.302.05 2.363.252.38 2.574.685.25 4.90Mean2.332.572.332.552.772.484.685.09% difference from initial measurement10.19.3610.28.83Quality material 29.3610.28.83Replicate 1 Replicate 2 Replicate 226.926.929.227.423.234.635.6Replicate 2 Replicate 32.532.572.3425.123.524.735.435.9Replicate 32.532.5425.327.427.029.035.435.9Replicate 32.532.5327.427.029.035.435.9Replicate 425.325.327.427.029.035.435.9										-
Replicate 32.362.392.362.432.572.394.904.73Mean & difference from initial measurement2.332.572.332.552.772.484.685.09% difference from initial measurement 9.3610.28.83 Quality material 2Initial measurementThree freeze- measurementInitial measurementBench-top measurementInitial measurementProcessed measurementInitial measurement </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•									
Mean2.332.572.332.552.772.484.685.09% difference from initial measurement10.19.3610.28.83Quality material 2Image freeze- measurementInitial thaw cyclesImage freeze- measurementInitial stabilityProcessed measurementInitial measurementProcessed measurementInitial measurementProcessed stabilityInitial measurementProcessed stabilityInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementInitial measurementProcessed measurementInitial measu										
% difference from initial measurementI10.1I9.36II10.2I8.83Quality material 2III<	Replicate 3	2.36	2.39	2.36	2.43		2.57	2.39	4.90	4.73
Initial measurementInitial measurementInitial thaw cyclesInitial measurementBench-top measurementInitial measurementProcessed measurementInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementInitial measurementBench-top stabilityInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementProcessed measurementInitial measurementInitial measurementInitial measurementProcessed measurementInitial measurementInitia		2.33	2.57	2.33	2.55		2.77	2.48	4.68	5.09
Initial measurementImage: Second			10.1		9,36			-10.2		8,83
Initial measurementThree freeze- thaw cyclesInitial measurementBench-top measurementInitial stabilityProcessed measurementInitial measurementInitia	initial measurement		10.1		5.50			10.2		0.05
Initial measurementThree freeze- thaw cyclesInitial measurementBench-top measurementInitial stabilityProcessed measurementInitial measurementInitia	Quality material 2									
measurementthaw cyclesmeasurementstabilitymeasurementsample stabilitymeasurementstabilityReplicate 126.925.926.929.227.423.234.635.6Replicate 226.427.926.425.123.524.735.435.9Replicate 325.326.225.327.427.029.031.733.6		Initial	Three freeze-	Initial	Bench-ton		Initial	Processed	Initial	Long-term
Replicate 126.925.926.929.227.423.234.635.6Replicate 226.427.926.425.123.524.735.435.9Replicate 325.326.225.327.427.029.031.733.6					•					
Replicate 2 26.4 27.9 26.4 25.1 23.5 24.7 35.4 35.9 Replicate 3 25.3 26.2 25.3 27.4 27.0 29.0 31.7 33.6	Replicate 1									
Replicate 3 25.3 26.2 25.3 27.4 27.0 29.0 31.7 33.6										
	•									
Mean 767 767 767 777 770 760 767 770 760										
% difference from	Mean % difference from	26.2	26.7	26.2	27.2		26.0	25.7	33.9	35.0
initial measurement 1.81 3.96 3.40			1.81		3.96			-1.24		3.40

Analyte:	HPMM									
Quality material 1										
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
Replicate 1	measurement 13.3	thaw cycles 14.7	measurement 13.3	stability 14.2		14.4	sample stability 14.2		neasurement 91.5	stability 87.5
Replicate 2	14.0	13.1	14.0	12.8		14.8	12.9		104	83.7
Replicate 3	12.7	13.0	12.7	14.3		12.6	12.8		96.0	87.4
Mean	13.3	13.6	13.3	13.8		13.9	13.3		97.0	86.2
% difference from	10.0		10.0			1010			5710	-11.1
initial measurement		2.37		3.49			-4.54			-11.1
Quality material 2										
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
	measurement		measurement	stability			sample stability		neasurement	stability
Replicate 1	148 143	140	148 143	147 150		137 131	130 132		899 974	872 922
Replicate 2 Replicate 3	145	148 142	145	150		131	132		974 914	857
Mean % difference from	146	143	146	150		136	135		929	883
initial measurement		-1.61		2.82			-0.65			-4.92
Analyte:	PHGA									
Quality material 1										
~	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
	measurement	thaw cycles	measurement	stability		measurement	sample stability	1	neasurement	stability
Replicate 1	46.4	51.7	46.4	49.8		52.2	46.9		31.4	24.5
Replicate 2 Replicate 3	46.5 45.9	47.1 48.0	46.5 45.9	47.3 42.7		54.1 51.2	49.9 46.8		32.0 27.7	31.8 26.4
Replicate 5	43.5	40.0	43.5	42.7		51.2	40.8		21.1	20.4
Mean	46.3	48.9	46.3	46.6		52.5	47.9		30.4	27.6
% difference from initial measurement		5.79		0.71			-8.83			-9.19
Quality material 2										
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
	measurement		measurement	stability			sample stability	1	neasurement	stability
Replicate 1	452	475	452	473		454	443		357	420
Replicate 2 Replicate 3	467 463	470 447	467 463	459 472		442 483	439 446		437 343	462 312
Mean % difference from	461	464	461	468		459	443		379	398
initial measurement		0.70		1.59			-3.63			5.00
Analyte:	IPM3									
Quality material 1										
	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
	measurement		measurement	stability			sample stability	1	neasurement	-
Replicate 1	3.96	4.18	3.96	4.08		4.27	3.16		0.50	1.47
Replicate 2 Replicate 3	3.76 4.24	4.37 4.10	3.76 4.24	4.82 3.97		3.78 3.89	4.25 3.62		0.93 0.91	0.313 0.687
Mean % difference from	3.99	4.22	3.99	4.29		3.98	3.67		0.78	0.82
initial measurement		5.76		7.66			-7.66			5.74
Quality material 2					_					
Quality material 2	Initial	Three freeze-	Initial	Bench-top		Initial	Processed		Initial	Long-term
	measurement		measurement	stability			sample stability		neasurement	-
Replicate 1	40.0	40.3	40.0	39.7		37.5	39.5		42.0	42.6
Replicate 2	39.5	40.7	39.5	41.6		37.9	37.4		46.4	46.2
Replicate 3	40.2	38.5	40.2	41.7		42.0	42.5		43.9	40.5
Mean	39.9	39.8	39.9	41.0		39.1	39.8		44.1	43.1
Mean % difference from initial measurement	39.9	39.8 - 0.32	39.9	41.0 2.68		39.1	39.8 1.59		44.1 	43.1 - 2.29

Analyte:	2MHA							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed		Long-term
	measurement		measurement	stability		sample stability	measurement	-
Replicate 1	19.7	16.0	19.7	16.5	14.4	12.6	32.4	39.6
Replicate 2	17.2	14.0	17.2	15.8	15.9	13.4	37.7	38.9
Replicate 3	19.0	18.3	19.0	17.6	14.4	12.9	30.9	33.0
Mean	18.6	16.1	18.6	16.6	14.9	13.0	33.7	37.2
% difference from								
initial measurement		-13.7		-10.8		-13.2		10.4
Quality material 2								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	147	145	147	130	159	160	337	340
Replicate 2	138	155	138	155	130	159	302	346
Replicate 3	140	146	140	158	152	154	333	319
Mean	142	148	142	148	147	158	324	335
% difference from		4.69		4.32		7.32		3.43
initial measurement		4.09		4.52		7.52		5.45
Analyte:	ВРМА							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement	stability		sample stability	measurement	
Replicate 1	3.53	3.95	3.53	4.05	3.02	3.62	4.94	6.17
Replicate 2	3.12	3.45	3.12	2.95	3.82	3.68	5.82	5.82
•	3.40	3.45	3.40	3.02	3.47	3.24	5.64	6.52
Replicate 3	3.40	3.42	3.40	3.02	3.47	3.24	5.04	0.52
Mean	3.35	3.61	3.35	3.34	3.44	3.51	5.47	6.17
% difference from		7.71		-0.38		2.14		12.9
initial measurement		7.71		-0.50		2.14		12.5
Quality material 2								A19218
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	34.9	34.9	34.9	31.9	36.1	35.3	176	149
Replicate 2	34.9	34.0	34.9	34.2	31.4	35.9	160	139
Replicate 3	36.6	38.0	36.6	36.9	39.7	38.9	166	150
Mean	35.5	35.6	35.5	34.3	35.7	36.7	167	146
% difference from		0.48		-3.12		2.60		-12.9
initial measurement		0.48	-	-3.12		2.00		-12.5
Analyte:	34MH							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement	stability		sample stability	measurement	
Replicate 1		31.4	29.6	32.9	29.4	30.8	82.2	80.8
Replicate 2	29.6						86.9	85.2
	29.6 28.3				32.3	30.1		
	29.6 28.3 31.2	32.7 31.4	28.3 31.2	31.3 32.2	32.3 28.3	30.1 26.6	83.4	87.6
Replicate 3	28.3 31.2	32.7 31.4	28.3 31.2	31.3 32.2	28.3	26.6	83.4	87.6
Replicate 3 Mean	28.3	32.7 31.4 31.8	28.3	31.3 32.2 32.1		26.6 29.1		87.6 84.5
Replicate 3	28.3 31.2 29.7	32.7 31.4	28.3 31.2	31.3 32.2	28.3	26.6	83.4	87.6
Replicate 3 Mean % difference from initial measurement	28.3 31.2 29.7	32.7 31.4 31.8	28.3 31.2	31.3 32.2 32.1	28.3	26.6 29.1	83.4	87.6 84.5
Replicate 3 Mean <mark>% difference from</mark>	28.3 31.2 29.7	32.7 31.4 31.8	28.3 31.2	31.3 32.2 32.1	28.3	26.6 29.1	83.4	87.6 84.5 0.44
Replicate 3 Mean % difference from initial measurement	28.3 31.2 29.7 	32.7 31.4 31.8 7.30 Three freeze-	28.3 31.2 29.7 	31.3 32.2 32.1 8.32 Bench-top	28.3 30.0 Initial	26.6 29.1 -2.90 Processed	83.4 84.2 Initial	87.6 84.5 0.44 Long-term
Replicate 3 Mean % difference from initial measurement Quality material 2	28.3 31.2 29.7 Initial measurement	32.7 31.4 31.8 7.30 Three freeze- thaw cycles	28.3 31.2 29.7 Initial measurement	31.3 32.2 32.1 8.32 Bench-top stability	28.3 30.0 Initial measurement	26.6 29.1 -2.90 Processed sample stability	83.4 84.2 Initial measurement	87.6 84.5 0.44 Long-term stability
Replicate 3 Mean % difference from initial measurement Quality material 2 Replicate 1	28.3 31.2 29.7 Initial measurement 308	32.7 31.4 31.8 7.30 Three freeze- thaw cycles 323	28.3 31.2 29.7 Initial measurement 308	31.3 32.2 32.1 8.32 Bench-top stability 320	28.3 30.0 Initial measurement 302	26.6 29.1 -2.90 Processed sample stability 299	83.4 84.2 Initial measurement 597	87.6 84.5 0.44 Long-term stability 577
Replicate 3 Mean % difference from initial measurement Quality material 2 Replicate 1 Replicate 2	28.3 31.2 29.7 Initial measurement 308 299	32.7 31.4 31.8 7.30 Three freeze- thaw cycles 323 318	28.3 31.2 29.7 Initial measurement 308 299	31.3 32.2 32.1 8.32 Bench-top stability 320 314	28.3 30.0 Initial measurement 302 301	26.6 29.1 -2.90 Processed sample stability 299 295	83.4 84.2 Initial measurement 597 623	87.6 84.5 0.44 Long-term stability 577 622
Replicate 3 Mean % difference from initial measurement	28.3 31.2 29.7 Initial measurement 308 299 313	32.7 31.4 31.8 7.30 Three freeze- thaw cycles 323	28.3 31.2 29.7 Initial measurement 308 299 313	31.3 32.2 32.1 8.32 Bench-top stability 320	28.3 30.0 Initial measurement 302	26.6 29.1 -2.90 Processed sample stability 299 295 320	83.4 84.2 Initial measurement 597	87.6 84.5 0.44 Long-term stability 577
Replicate 3 Mean % difference from initial measurement Quality material 2 Replicate 1 Replicate 2	28.3 31.2 29.7 Initial measurement 308 299	32.7 31.4 31.8 7.30 Three freeze- thaw cycles 323 318	28.3 31.2 29.7 Initial measurement 308 299	31.3 32.2 32.1 8.32 Bench-top stability 320 314	28.3 30.0 Initial measurement 302 301	26.6 29.1 -2.90 Processed sample stability 299 295	83.4 84.2 Initial measurement 597 623	87.6 84.5 0.44 Long-term stability 577 622

Analyte:	PHEM							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	2.18	2.38	2.18	2.65	2.83	2.32	5.36	5.76
Replicate 2	2.45	2.10	2.45	2.38	2.56	2.05	4.83	5.80
Replicate 3	2.27	2.14	2.27	2.49	2.23	2.26	5.22	5.70
Mean	2.30	2.21	2.30	2.51	2.54	2.21	5.14	5.75
% difference from initial measurement		-4.03		9.00		-13.0		12.0
Quality material 2								
Quality material 2	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement		measurement	stability		sample stability	measurement	•
Replicate 1	24.0	20.7	24.0	24.4	23.8	23.3	52.0	51.4
Replicate 2	23.8	21.8	23.8	23.3	22.5	22.8	53.2	58.8
Replicate 3	24.3	22.1	24.3	23.6	25.7	23.8	50.8	54.1
Replicate 5	24.3	22.1	24.5	23.0	23.7	23.0	50.8	34.1
Mean	24.0	21.5	24.0	23.8	24.0	23.3	52.0	54.8
% difference from initial measurement		-10.3		-1.04		-2.86		5.42
Analyte:	BMA							
Quality material 1								
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
	measurement	thaw cycles	measurement	stability	measurement	sample stability	measurement	stability
Replicate 1	2.01	1.94	2.01	2.18	2.09	1.94	3.74	4.12
Replicate 2	2.10	1.90	2.10	1.86	2.32	1.75	4.69	4.54
Replicate 3	2.22	1.84	2.22	2.09	1.99	2.19	3.82	4.05
Mean	2.11	1.89	2.11	2.04	2.13	1.96	4.08	4.24
% difference from								
initial measurement		-10.3		-3.35		-8.00		3.76
Quality material 2								
Quality material 2	Initial	Thursd free a	Initial	Daugh ta	Initial	Deserves	Initial	Laws tax
	Initial	Three freeze-	Initial	Bench-top	Initial	Processed	Initial	Long-term
De aliante 1	measurement		measurement	stability		sample stability	measurement	
Replicate 1	19.7	17.5	19.7	19.7	20.2	19.3	35.8	39.4
Replicate 2	19.1	17.5	19.1	19.2	20.7	19.1	41.7	40.6
Replicate 3	18.3	18.3	18.3	20.7	20.0	21.2	38.9	39.4
Mean	19.0	17.8	19.0	19.8	20.3	19.9	38.8	39.8
% difference from		-6.72		4.21		-2.21		2.74
initial measurement		0172						

Table C4. LOD, Specificity, Fit for intended use

LOD, specificity and fit for intended use - fill in yellow

shaded cells

Method name:	VOC metabolites in uri	ne
Method #:	2103a	
Matrix:	Urine	
Units:	μg/L	

Analytes	Limit of Detection (LOD)	Interferences successfully checked in at least 50 human samples	Accuracy, precision, LOD, specificity and stability meet performance specifications for intended use
СЕМА	6.96	yes	yes
ATCA	29.5	yes	yes
GAMA	9.40	yes	yes
AAMA	2.20	yes	yes
HEMA	0.79	yes	yes
DHBM	5.25	yes	yes
СҮНА	2.60	yes	yes
AMCA	6.26	yes	yes
TTCA	11.2	yes	yes
НРМА	13.0	yes	yes
MADA	12.0	yes	yes
HPM2	5.30	yes	yes
СҮМА	0.50	yes	yes
MHB3	0.60	yes	yes
HPMM	1.70	yes	yes
PHGA	12.0	yes	yes
IPM3	1.20	yes	yes
2MHA	5.00	yes	yes
BPMA	1.20	yes	yes
34MH	8.00	yes	yes
PHEM	1.00	yes	yes
BMA	0.50	yes	yes

References

- 1. Wallace, L.A., et al., *The influence of personal activities on exposure to volatile organic compounds*. Environ Res, 1989. **50**(1): p. 37-55.
- 2. Schnatter, A.R., K. Rosamilia, and N.C. Wojcik, *Review of the literature on benzene exposure and leukemia subtypes.* Chem Biol Interact, 2005. **153-154**: p. 9-21.
- 3. Cantor, K.P., *Drinking water and cancer*. Cancer Causes Control, 1997. 8: p. 292-308.
- 4. Lynberg, M., et al., Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods. Environ Health Perspect, 2001. **109**(6): p. 597-604.
- 5. Altmann, L., A. Bottger, and H. Wiegand, *Neurophysiological and psychophysical measurements reveal effects of acute low-level organic solvent exposure in humans*. Int Arch Occup Environ Health, 1990. **62**(7): p. 493-9.
- 6. IARC, *IARC monographs on the evaluation of carcinogenic risks to humans. Tobacco Smoke and Involuntary Smoking. IARC, Lyon, France.* 2004.
- 7. NCI, National Cancer Institute: Risk Associated with Smoking Cigarette with Low Machine-Measured Yields of Tar and Nicotine, U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Bethesda, MD. 2001.
- Wallace, L.A., *The exposure of the general population to benzene*. Cell Biol Toxicol, 1989.
 5(3): p. 297-314.
- Churchill, J.E., D.L. Ashley, and W.E. Kaye, *Recent chemical exposures and blood volatile organic compound levels in a large population-based sample*. Arch Environ Health, 2001. 56(2): p. 157-66.
- 10. Stevens, J.F. and C.S. Maier, *Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease.* Mol Nutr Food Res, 2008. **52**(1): p. 7-25.
- 11. Boettcher, M.I. and J. Angerer, *Determination of the major mercapturic acids of acrylamide and glycidamide in human urine by LC-ESI-MS/MS*. J Chromatogr B Analyt Technol Biomed Life Sci, 2005. **824**(1-2): p. 283-94.
- 12. EPA, *Integrated Risk Information System Acrylonitrile (CASRN 107-13-1)*. 1987, United States Environmental Protection Agency.
- 13. IARC, International Agency for Research on Cancer (IARC), Monographs on the Evaluation of carcinogenic risks to humans: overall evaluation of carciogenicity, Supplement 7, p. 120f. 1987, IARC Publications: Lyon, France.
- 14. Urban, M., et al., *Determination of the major mercapturic acids of 1,3-butadiene in human and rat urine using liquid chromatography with tandem mass spectrometry*. J Chromatogr B Analyt Technol Biomed Life Sci, 2003. **796**(1): p. 131-40.
- 15. Jonsson, L.S., et al., Levels of 2-thiothiazolidine-4-carboxylic acid (TTCA) and effect modification of polymorphisms of glutathione-related genes in vulcanization workers in

the southern Sweden rubber industries. Int Arch Occup Environ Health, 2007. 80(7): p. 589-98.

- 16. Scherer, G., et al., *Determination of two mercapturic acids related to crotonaldehyde in human urine: influence of smoking.* Hum Exp Toxicol, 2007. **26**(1): p. 37-47.
- 17. Liu, X.Y., et al., Crotonaldehyde induces oxidative stress and caspase-dependent apoptosis in human bronchial epithelial cells. Toxicol Lett, 2010. **195**(1): p. 90-8.
- 18. Logue, B.A., et al., *The analysis of 2-amino-2-thiazoline-4-carboxylic acid in the plasma of smokers and non-smokers*. Toxicol Mech Methods, 2009. **19**(3): p. 202-8.
- 19. Imbriani, M., et al., Urinary determination of N-acetyl- S-(N-methylcarbamoyl)cysteine and N-methylformamide in workers exposed to N, N-dimethylformamide. Int Arch Occup Environ Health, 2002. **75**(7): p. 445-52.
- 20. Swaen, G.M., et al., Mortality study update of ethylene oxide workers in chemical manufacturing: a 15 year update. J Occup Environ Med, 2009. **51**(6): p. 714-23.
- 21. IARC, *IARC monographs on the evaluation of carcinogenic risks to humans. Propylene Oxide. IARC, Lyon, France.* 1994. p. 181.
- 22. IARC, *IARC monographs on the evaluation of carcinogenic risks to humans. Styrene. IARC, Lyon, France.* 1994.
- Marchese, S., et al., Simultaneous determination of the urinary metabolites of benzene, toluene, xylene and styrene using high-performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 2004. 18(3): p. 265-72.
- 24. Dickson, R.P. and A.M. Luks, *Toluene toxicity as a cause of elevated anion gap metabolic acidosis*. Respir Care, 2009. **54**(8): p. 1115-7.
- 25. Hozo, I., et al., *Liver angiosarcoma and hemangiopericytoma after occupational exposure to vinyl chloride monomer*. Environ Health Perspect, 2000. **108**(8): p. 793-5.
- 26. Lash, L.H. and J.C. Parker, *Hepatic and renal toxicities associated with perchloroethylene*. Pharmacol Rev, 2001. **53**(2): p. 177-208.
- 27. Cheever, K.L., et al., *Development of an HPLC-MS procedure for the quantification of Nacetyl-S-(n-propyl)-l-cysteine, the major urinary metabolite of 1-bromopropane in human urine.* J Chromatogr B Analyt Technol Biomed Life Sci, 2009. **877**(8-9): p. 827-32.
- 28. Birner, G., et al., *Nephrotoxic and genotoxic N-acetyl-S-dichlorovinyl-L-cysteine is a urinary metabolite after occupational 1,1,2-trichloroethene exposure in humans: implications for the risk of trichloroethene exposure.* Environ Health Perspect, 1993. **99**: p. 281-4.
- 29. *NTP (National Toxicology Program). 2014. Report on Carcinogens, Thirteenth Edition.* <u>http://ntp.niehs.nih.gov/ntp/roc/content/profiles/isoprene.pdf</u>.
- 30. Alwis, K.U., et al., *Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS)*. Anal Chim Acta, 2012. **750**: p. 152-60.
- 31. Taylor, J.K., *Quality Assurance of Chemical Measurements*. 1987, Boca raton, FL: Lewis Publishers.
- 32. Caudill, S.P., R.L. Schleicher, and J.L. Pirkle, *Multi-rule quality control for the age-related eye disease study*. Stat Med, 2008. **27**(20): p. 4094-106.
- 33. Schettgen, T., A. Musiol, and T. Kraus, *Simultaneous determination of mercapturic acids derived from ethylene oxide (HEMA), propylene oxide (2-HPMA), acrolein (3-HPMA), acrylamide (AAMA) and N,N-dimethylformamide (AMCC) in human urine using liquid*

chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2008. **22**(17): p. 2629-38.

- 34. Logue, B.A., et al., *Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography-mass spectrometry.* J Chromatogr B Analyt Technol Biomed Life Sci, 2005. **819**(2): p. 237-44.
- 35. Schettgen, T., et al., *Fast determination of urinary S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acid (S-BMA) by column-switching liquid chromatography-tandem mass spectrometry.* J Chromatogr B Analyt Technol Biomed Life Sci, 2008. **863**(2): p. 283-92.
- 36. Ding, Y.S., et al., Simultaneous Determination of Six Mercapturic Acid Metabolites of Volatile Organic Compounds in Human Urine. Chem. Res. Toxicol., 2009. 22: p. 1018-1025.
- 37. ACGIH, American Conference of Government Industrial Hygienists: TLVs and BEIs Based on the Documentation of the "Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices". 2007, Signature Publications: Cincinnati, OH.
- 38. Luo, X. et al., Urinary Cyanoethyl Mercapturic Acid, a Biomarker of the Smoke Toxicant Acrylonitrile, Clearly Distinguished Smokers from Nonsmokers, Nicotine & Tobacco Research, 2020, 1-4